Evolution equations: input functions & stability

演化方程:输入函数

基本信息

项目摘要

Evolution equations describe the temporal development of a dynamical system driven by an initial state and a given input. In this project, we investigate evolution equations on an infinite-dimensional state space with the following two features: We allow for a considerable unboundedness of the input operator and for non- standard spaces of input functions. A natural example for such a space, where standard methods are limited, is given by the essentially bounded functions. Our setting encompasses many of the common partial differential equations with boundary input and control. The latter being the main motivation for the proposed research. The state- of-the art for related control problems requires relatively nice boundary operators and spaces of input functions, such as square integrable functions, that may be hard to check. Moreover, the natural choice of norm for the inputs may not fall into these classes. When trying to lift the known results to these more general spaces, one is soon faced with severe theoretical difficulties, e.g., the fact that the translation operator might not be strongly continuous anymore. Surprisingly, this even reveals several open problems in the (abstract) linear theory, as for instance the question whether mild solutions of an linear boundary control problem with essentially bounded inputs are always continuous. These open problems are explicitly part of the project. These remaining difficulties also indicate that the approach to the control of infinite-dimensional evolution equations with respect to non-standard function spaces has only emerged recently. In contrast, the underlying finite-dimensional theory is well-known in the case of essentially bounded inputs, going back to Eduardo Sontag, is well- known. The aim of this project is to develop further the well- posedness as well as the internal/external stability, both with respect to non-standard classes of input functions. The main focus lies on the space of bounded functions, which are of high relevance in application, but mathematically quite intricate. The project consists of two subprojects: parabolic equations and hyperbolic equations. In both subprojects, as most of questions are even open for the linear case, we first of all and mainly focus on this case. However, our long term goal are nonlinearities, in particular, we treat bilinear hyperbolic problems and semilinear parabolic evolution equations. A major novelty of this project is that we combine tools from operator theory, infinite-dimensional systems theory, functional calculus for bounded analytic functions and function spaces in order to investigate well- posedness and input-to-state stability of infinite-dimensional evolution equations with unbounded input operators.
演化方程描述了由初始状态和给定输入驱动的动力系统的时间发展。在这个项目中,我们研究具有以下两个特点的无限维状态空间上的发展方程:我们允许输入算子的相当大的无界性和输入函数的非标准空间。一个自然的例子,这样的空间,其中标准的方法是有限的,是由本质上有界的功能。我们的设置包括许多常见的偏微分方程的边界输入和控制。后者是拟议研究的主要动机。 相关控制问题的现有技术需要相对好的边界算子和输入函数的空间,例如平方可积函数,这可能难以检查。此外,自然选择的规范的投入可能不属于这些类。当试图将已知结果提升到这些更一般的空间时,人们很快就会面临严重的理论困难,例如,平移算子可能不再是强连续的。 令人惊讶的是,这甚至揭示了(抽象)线性理论中的几个公开问题,例如,具有基本有界输入的线性边界控制问题的温和解是否总是连续的问题。这些开放的问题显然是项目的一部分。这些剩余的困难也表明,方法来控制无穷维发展方程的非标准函数空间最近才出现。相比之下,基本的有限维理论在本质上有界输入的情况下是众所周知的,可以追溯到爱德华多·桑塔格,是众所周知的。这个项目的目的是进一步发展的适定性以及内部/外部的稳定性,无论是关于非标准类的输入函数。主要焦点在于有界函数的空间,这在应用中具有高度相关性,但数学上相当复杂。该项目包括两个子项目:抛物型方程和双曲型方程。在这两个子项目中,由于大多数问题甚至对线性情况都是开放的,因此我们首先主要关注这种情况。然而,我们的长期目标是非线性,特别是,我们处理双线性双曲问题和半线性抛物型发展方程。这个项目的一个主要新奇之处是我们结合了算子理论、无穷维系统理论、有界解析函数的泛函微积分和函数空间的联合收割机工具来研究具有无界输入算子的无穷维发展方程的适定性和输入-状态稳定性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Birgit Jacob其他文献

Professorin Dr. Birgit Jacob的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Birgit Jacob', 18)}}的其他基金

Interconnected infinite-dimensional systems for heterogeneous media
异构媒体的互连无限维系统
  • 批准号:
    317092854
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Control of Partial Differential Equations: A port-Hamiltonian approach
偏微分方程的控制:端口哈密尔顿方法
  • 批准号:
    222329719
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Energy-based analysis of evolution equations
基于能量的演化方程分析
  • 批准号:
    214819299
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Functional analytic methods for evolution equations
演化方程的泛函分析方法
  • 批准号:
    189767991
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

非线性发展方程及其吸引子
  • 批准号:
    10871040
  • 批准年份:
    2008
  • 资助金额:
    27.0 万元
  • 项目类别:
    面上项目
大气、海洋科学中偏微分方程和随机动力系统的研究
  • 批准号:
    10801017
  • 批准年份:
    2008
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
不可压流体力学方程中的一些问题
  • 批准号:
    10771177
  • 批准年份:
    2007
  • 资助金额:
    17.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
  • 批准号:
    EP/Y033507/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Intersection Theory for Differential Equations
微分方程的交集理论
  • 批准号:
    2401570
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
New Challenges in the Study of Propagation of Randomness for Nonlinear Evolution Equations
非线性演化方程随机传播研究的新挑战
  • 批准号:
    2400036
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Second Joint Alabama--Florida Conference on Differential Equations, Dynamical Systems and Applications
会议:第二届阿拉巴马州-佛罗里达州微分方程、动力系统和应用联合会议
  • 批准号:
    2342407
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: On New Directions for the Derivation of Wave Kinetic Equations
合作研究:波动力学方程推导的新方向
  • 批准号:
    2306378
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
  • 批准号:
    2348495
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Diffusion in Kinetic Equations
动力学方程中的扩散
  • 批准号:
    2350263
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了