Geometry of Groups and Moduli Spaces
群几何和模空间
基本信息
- 批准号:16204005
- 负责人:
- 金额:$ 10.48万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (A)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We investigated mapping class group of surfaces and moduli space of Riemann surfaces as well as related groups and moduli spaces mainly from the viewpoint of topology. In a joint work with Penner, the representative constructed a canonical 1-cocycle on the Teichmuller space. Kawazumi, together with Penner and Bene, realized higher Johnson homomorphisms combinatorially on the Teichmuller space. Furuta developed theory of Floer homotopy type associated to the Seiberg-Witten theory and Tsuboi obtained a remarkable result concerning the structure of real analytic diffeomorphism group of manifolds. Fujiwara, Kohno, and Matsumoto obtained deep results in combinatorial structure of hyperbolic as well as the mapping class group, study of configuration spaces and arithmetic mapping class group, respectively. Mitsumatsu, Kitano, Akita with-Kawazumi, Hirose, and Murakami obtained interesting results, respectively, in the studies of 3-dimensional contact geometry, twisted Alexander polynomials, integral Morita-Mumford classes, mapping class group of surfaces in 4-manifolds, and volumes in hyperbolic geometry. Also the representative studied the structure of the Lie algebra consisting of symplectic derivations of the tensor algebra, without unit, generated by the homology of surfaces and, as an application, constructed unstable homology classes of genus 1 moduli spaces. Based on these results, further study of our theme has come into view.
主要从拓扑学的角度研究了曲面的映射类群和黎曼曲面的模空间以及相关的群和模空间。在与Penner的合作中,代表在Teichmuller空间上构造了一个典型的1-上循环。Kawazumi,连同Penner和贝内,实现了更高的约翰逊同态组合的Teichmuller空间。古田发展理论的Floer同伦型相关联的Seiberg-Witten理论和坪井获得了显着的结果结构的真实的分析同胚群的流形。Fujiwara、Kohno和松本分别在双曲型的组合结构、映射类群、构形空间和算术映射类群的研究中获得了较深入的结果。Mitsumatsu,Kitano,秋田with-Kawazumi,Hirose和Murakami分别在三维接触几何,扭曲亚历山大多项式,积分Morita-Mumford类,4-流形中曲面的映射类群和双曲几何中的体积的研究中获得了有趣的结果。此外,该代表研究了由曲面的同调生成的张量代数的辛导子组成的李代数的结构,作为应用,构造了亏格为1的模空间的不稳定同调类。在此基础上,对本课题的进一步研究也就有了展望。
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Twisted Morita-Munford classes on braid groups
辫子组的扭曲 Morita-Munford 课程
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Minakawa;Hiroyuki;Nariya KAWAZUMI
- 通讯作者:Nariya KAWAZUMI
Signatures of foliated surface bundles and the symplectomorphism groups of surfaces
- DOI:10.1016/j.top.2004.05.002
- 发表时间:2003-05
- 期刊:
- 影响因子:0
- 作者:D. Kotschick;S. Morita
- 通讯作者:D. Kotschick;S. Morita
On the group of foliation preserving diffeomorphisms
关于保叶微分同胚群
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:J;Heo;瀧根健志;金周映;井上光輝;金岡 秀明;Takashi Tsuboi
- 通讯作者:Takashi Tsuboi
Characteristic classes of foliated surface bunales with area-preserving holonomy
具有保留面积完整性的叶面表面文丘陵的特征类别
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:MORITA;Shigegaki;D. Kotschick
- 通讯作者:D. Kotschick
Nilpotency of the Bauer-Furate stable homotopy Seiberg-Nitten invariants
Bauer-Furate 稳定同伦 Seiberg-Nitten 不变量的幂零性
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:FUROIA;Hilao;Kamstani Minami
- 通讯作者:Kamstani Minami
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MORITA Shigeyuki其他文献
MORITA Shigeyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MORITA Shigeyuki', 18)}}的其他基金
Geometry of Groups and Moduli Spaces (2)
群和模空间的几何(2)
- 批准号:
19204003 - 财政年份:2007
- 资助金额:
$ 10.48万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Mapping Class Group of Surfaces and Geometry of Moduli Spaces
曲面类群与模空间几何的映射类群
- 批准号:
13440017 - 财政年份:2001
- 资助金额:
$ 10.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
STRUCTURE OF THE MAPPING CLASS GROUP AND GEOMETRY OF THE MODULI SPACE OF RIEMANN SURFACES
黎曼曲面的映射类群结构及模空间几何
- 批准号:
10440016 - 财政年份:1998
- 资助金额:
$ 10.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
COMPREHENSIVE STUDY OF TOPOLOGY
拓扑学的综合研究
- 批准号:
08304006 - 财政年份:1996
- 资助金额:
$ 10.48万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
STUDY OF MODULI SPACE OF RIEMANN SURFACES
黎曼曲面模空间的研究
- 批准号:
08454014 - 财政年份:1996
- 资助金额:
$ 10.48万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
New development of complex analysis in several variables using moduli and closings of an open Riemann surface
使用开放黎曼曲面的模数和闭包进行多变量复分析的新发展
- 批准号:
23K03140 - 财政年份:2023
- 资助金额:
$ 10.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Moduli of holomorphic vector bundles over a Riemann surface
黎曼曲面上的全纯向量丛的模
- 批准号:
544920-2019 - 财政年份:2019
- 资助金额:
$ 10.48万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Study of the continuations and the spans of an open Riemann surface in view of the thory of functions of several complex variables
从多复变量函数理论研究开黎曼曲面的延拓和跨度
- 批准号:
15K04930 - 财政年份:2015
- 资助金额:
$ 10.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the geometry of a Riemann surface underlying a virtual turning point
虚拟转折点下黎曼曲面的几何
- 批准号:
20540150 - 财政年份:2008
- 资助金额:
$ 10.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Continuations of a Riemann surface and dynamics of viscos fluid --- study of conformal embeddings and associated Poiseuille flow
黎曼曲面的延拓和粘性流体动力学——共形嵌入和相关泊肃叶流的研究
- 批准号:
20540174 - 财政年份:2008
- 资助金额:
$ 10.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional Analyistic Studies On The Algebra Of Bounded Analytic Functions On A Riemann Surface
黎曼曲面上有界解析函数代数的泛函分析研究
- 批准号:
16540132 - 财政年份:2004
- 资助金额:
$ 10.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the theory of conformal embeddings of a Riemann surface focused on the hyperrbolic metric and hydrodynamics of viscous fluids
黎曼曲面共形嵌入理论研究,重点关注粘性流体的双曲度量和流体动力学
- 批准号:
16540157 - 财政年份:2004
- 资助金额:
$ 10.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study of Riemann Surface via Weil-Peterson Geometry of Teichmuller Spaces
基于Teichmuller空间Weil-Peterson几何的黎曼曲面研究
- 批准号:
0222387 - 财政年份:2001
- 资助金额:
$ 10.48万 - 项目类别:
Standard Grant
The Algebras of Bounded Analytic Functions on a Riemann Surface and the isomorphic problem
黎曼曲面上有界解析函数的代数与同构问题
- 批准号:
12640147 - 财政年份:2000
- 资助金额:
$ 10.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study of Riemann Surface via Weil-Peterson Geometry of Teichmuller Spaces
基于Teichmuller空间Weil-Peterson几何的黎曼曲面研究
- 批准号:
0071862 - 财政年份:2000
- 资助金额:
$ 10.48万 - 项目类别:
Standard Grant














{{item.name}}会员




