STRUCTURE OF THE MAPPING CLASS GROUP AND GEOMETRY OF THE MODULI SPACE OF RIEMANN SURFACES
黎曼曲面的映射类群结构及模空间几何
基本信息
- 批准号:10440016
- 负责人:
- 金额:$ 5.18万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B).
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have investigated the structure of the mapping class group of surfaces as well as the geometry of moduli space of Riemann surfaces mainly from the viewpoints of topology. The main results we obtained are as follows.(i) The subalgebra of the rational cohomology algebra of the mapping class group of surfaces generated by the Mumford-Morita classes is called the tautological algebra. There have been three approaches to the study of this tautological algebra. The first is based on the twisted Mumford-Morita classes introduced by Kawazumi, the second is in terms of invariants for trivalent graphs and the third is through symplectic representation theory. Summarizing previous results, we found that the above three approaches correspond exactly to each others.(ii) The theory of secondary characteristic classes of the mapping class group is still a largely unknown area. However, in this research, we proved that these secondary characteristic classes have deep structures that cannot be detected by the nilpotent completion of the Torelli group. It seems highly likely that the solvable or semi-simple structure of the Torelli group will become more and more important in the future.(iii) We made significant progress in understanding the algebro-geometrical as well as the topological structure of families of Riemann surfaces. In particular, we obtained many results concerning the monodromies of symplectic fibrations.
本文主要从拓扑学的角度研究了曲面的映射类群的结构以及黎曼曲面的模空间几何。我们得到的主要结果如下。(i)由Mumford-Morita类生成的曲面的映射类群的有理上同调代数的子代数称为重言式代数。有三种方法来研究这个重言式代数。第一个是基于扭曲的Mumford-Morita类Kawazumi介绍,第二个是在三价图的不变量和第三个是通过辛表示理论。总结以往的结果,我们发现,上述三种方法完全对应于对方。(ii)映射类群的次特征类理论在很大程度上还是一个未知的领域。然而,在这项研究中,我们证明了这些次级特征类具有无法通过Torelli群的幂零完备化检测到的深层结构。Torelli群的可解或半简单结构在未来很可能会变得越来越重要。(iii)我们取得了重大进展,了解代数几何以及拓扑结构的家庭黎曼曲面。特别地,我们得到了许多关于辛纤维化的monodromies的结果。
项目成果
期刊论文数量(50)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MURAKAMI,Jun(共著): "On a universal perturbative invariant of 3-manifolds" Topology. 37. 539-574 (1998)
MURAKAMI, Jun(合著者):“关于 3 流形的普遍微扰不变量”拓扑 37. 539-574 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
NAKAMURA,Hiroaki (共著): "On a subgroup of the Grothendieck-Teichmuller group acting on the tower of protinite Teichmuller modular groups"Invent.Math.. 141. 503-560 (2000)
NAKAMURA, Hiroaki(合著者):“关于作用于 protinite Teichmuller 模群塔的 Grothendieck-Teichmuller 群的子群”Invent.Math.. 141. 503-560 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
MURAKAMI, Jun(共著): "On a universal perturbative invariants of 3-manifolds"Topology. 37. 539-574 (1998)
MURAKAMI, Jun(合著者):“论 3-流形的普遍微扰不变量”拓扑 37. 539-574 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroaki NAKAMURA (co-author): "On a subgroup of the Grothendieck-Teichmuller group acting on the tower of profinite Teichmuller modular groups"Invent.Math.. 141. 503-560 (2000)
Hiroaki NAKAMURA(合著者):“关于作用于有限 Teichmuller 模群塔的 Grothendieck-Teichmuller 群的子群”Invent.Math.. 141. 503-560 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
NAKAMURA, Hiroaki: "Limits of Galois representations in fundamental groups along maximal degenerations of marked curves"Amer. J. Math.. 121. 315-358 (1999)
NAKAMURA、Hiroaki:“沿着标记曲线的最大退化,基本群中伽罗瓦表示的极限”Amer。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MORITA Shigeyuki其他文献
MORITA Shigeyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MORITA Shigeyuki', 18)}}的其他基金
Geometry of Groups and Moduli Spaces (2)
群和模空间的几何(2)
- 批准号:
19204003 - 财政年份:2007
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Geometry of Groups and Moduli Spaces
群几何和模空间
- 批准号:
16204005 - 财政年份:2004
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Mapping Class Group of Surfaces and Geometry of Moduli Spaces
曲面类群与模空间几何的映射类群
- 批准号:
13440017 - 财政年份:2001
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
COMPREHENSIVE STUDY OF TOPOLOGY
拓扑学的综合研究
- 批准号:
08304006 - 财政年份:1996
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
STUDY OF MODULI SPACE OF RIEMANN SURFACES
黎曼曲面模空间的研究
- 批准号:
08454014 - 财政年份:1996
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
New development of complex analysis in several variables using moduli and closings of an open Riemann surface
使用开放黎曼曲面的模数和闭包进行多变量复分析的新发展
- 批准号:
23K03140 - 财政年份:2023
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Moduli of holomorphic vector bundles over a Riemann surface
黎曼曲面上的全纯向量丛的模
- 批准号:
544920-2019 - 财政年份:2019
- 资助金额:
$ 5.18万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Study of the continuations and the spans of an open Riemann surface in view of the thory of functions of several complex variables
从多复变量函数理论研究开黎曼曲面的延拓和跨度
- 批准号:
15K04930 - 财政年份:2015
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the geometry of a Riemann surface underlying a virtual turning point
虚拟转折点下黎曼曲面的几何
- 批准号:
20540150 - 财政年份:2008
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Continuations of a Riemann surface and dynamics of viscos fluid --- study of conformal embeddings and associated Poiseuille flow
黎曼曲面的延拓和粘性流体动力学——共形嵌入和相关泊肃叶流的研究
- 批准号:
20540174 - 财政年份:2008
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional Analyistic Studies On The Algebra Of Bounded Analytic Functions On A Riemann Surface
黎曼曲面上有界解析函数代数的泛函分析研究
- 批准号:
16540132 - 财政年份:2004
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the theory of conformal embeddings of a Riemann surface focused on the hyperrbolic metric and hydrodynamics of viscous fluids
黎曼曲面共形嵌入理论研究,重点关注粘性流体的双曲度量和流体动力学
- 批准号:
16540157 - 财政年份:2004
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study of Riemann Surface via Weil-Peterson Geometry of Teichmuller Spaces
基于Teichmuller空间Weil-Peterson几何的黎曼曲面研究
- 批准号:
0222387 - 财政年份:2001
- 资助金额:
$ 5.18万 - 项目类别:
Standard Grant
The Algebras of Bounded Analytic Functions on a Riemann Surface and the isomorphic problem
黎曼曲面上有界解析函数的代数与同构问题
- 批准号:
12640147 - 财政年份:2000
- 资助金额:
$ 5.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study of Riemann Surface via Weil-Peterson Geometry of Teichmuller Spaces
基于Teichmuller空间Weil-Peterson几何的黎曼曲面研究
- 批准号:
0071862 - 财政年份:2000
- 资助金额:
$ 5.18万 - 项目类别:
Standard Grant














{{item.name}}会员




