Predictive models for biological aggressiveness of pancreatobiliary cancers by integrative molecular analysis of their precursor lesions

通过对胰胆癌前驱病变进行综合分子分析来预测胰胆癌的生物侵袭性

基本信息

项目摘要

Pancreatobiliary (PB) cancers are a group of biologically aggressive neoplasms with a poor prognosis. In recent years, molecular subgroups have been defined and work has begun to characterize the genomic and transcriptomic landscape of PB carcinomas. Due to the limited number of known predisposing factors, early detection seems to be the most effective approach to improve prognosis, whereas primary prevention measures show limited relevance. Therefore, a comprehensive characterization of the genetic landscape of PB precursors is of great importance in order to uncover their molecular evolution to cancer on the one hand and to identify predictors of biological behavior in the early stages of disease development on the other hand. In this project, our goal is to decipher the molecular basis of the heterogeneous biological behavior of pancreatic and biliary duct cancer by isolating their known and putative precursor lesions and characterizing them from their development to invasion. Using established and newly developed methods based on human tissue, pancreatic and bile duct cancer will be used as a model to develop a concept of tumorigenesis that will allow better early detection and targeted therapeutic approaches. For this purpose, clinically and morphologically well characterized human tissue collectives will be used to generate pure cell populations from different normal tissue compartments and precursor lesions (preinvasive lesions), which will then be subjected to genomic and transcriptomic characterization. The results obtained from precursor lesions from different patients will be compared with each other and as matched pairs with the accompanying invasive tumors and their lymph nodes and blood-borne metastases to identify risk profiles of cancer precursors that predict the biological behavior of a given neoplasm using a bioinformatics approach. Organoids from human tissue are used for genomediting and gene knock-down experiments to assess the functional significance of the predicted driver events. Finally, tissue and fluid based approaches are used to determine the value of identified relevant molecular markers in vivo in retrospective and prospective series.
胰胆管(PB)癌是一组具有生物学侵袭性的肿瘤,预后较差。近年来,分子亚组已经被定义,并且已经开始研究 PB 癌的基因组和转录组景观。由于已知诱发因素的数量有限,早期发现似乎是改善预后的最有效方法,而一级预防措施的相关性有限。因此,全面表征 PB 前体的遗传景观非常重要,一方面可以揭示其向癌症的分子进化,另一方面可以确定疾病发展早期阶段生物学行为的预测因素。在这个项目中,我们的目标是通过分离胰腺癌和胆管癌已知和假定的前体病变并表征它们从发展到侵袭的过程,来破译胰腺癌和胆管癌异质生物学行为的分子基础。使用基于人体组织的现有方法和新开发的方法,胰腺癌和胆管癌将被用作开发肿瘤发生概念的模型,从而实现更好的早期检测和有针对性的治疗方法。为此,将使用临床和形态学上充分表征的人体组织集合体,从不同的正常组织区室和前体病变(侵袭前病变)中产生纯细胞群,然后对其进行基因组和转录组学表征。从不同患者的前体病变获得的结果将相互比较,并与伴随的侵袭性肿瘤及其淋巴结和血源性转移进行配对,以识别癌症前体的风险概况,从而使用生物信息学方法预测给定肿瘤的生物学行为。来自人体组织的类器官用于基因组编辑和基因敲低实验,以评估预测驱动事件的功能意义。最后,使用基于组织和液体的方法来确定回顾性和前瞻性系列中已识别的体内相关分子标记的价值。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professorin Dr. Irene Esposito其他文献

Professorin Dr. Irene Esposito的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professorin Dr. Irene Esposito', 18)}}的其他基金

Molecular characterization of precursor lesions of bile duct cancer
胆管癌前驱病变的分子特征
  • 批准号:
    284318716
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
河北南部地区灰霾的来源和形成机制研究
  • 批准号:
    41105105
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
保险风险模型、投资组合及相关课题研究
  • 批准号:
    10971157
  • 批准年份:
    2009
  • 资助金额:
    24.0 万元
  • 项目类别:
    面上项目
RKTG对ERK信号通路的调控和肿瘤生成的影响
  • 批准号:
    30830037
  • 批准年份:
    2008
  • 资助金额:
    190.0 万元
  • 项目类别:
    重点项目
新型手性NAD(P)H Models合成及生化模拟
  • 批准号:
    20472090
  • 批准年份:
    2004
  • 资助金额:
    23.0 万元
  • 项目类别:
    面上项目

相似海外基金

Machine Learning and Multiomics for Predictive Models and Biomarker Discovery in Preterm Infants.
用于早产儿预测模型和生物标志物发现的机器学习和多组学。
  • 批准号:
    10729640
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Predictive multi-scale model of focal adhesion-based durotaxis
基于粘着斑的 durotaxis 的预测多尺度模型
  • 批准号:
    10798520
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Predictive Models of Beryllium Sensitization and Chronic Beryllium Disease
铍致敏和慢性铍病的预测模型
  • 批准号:
    10736862
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Using Machine Learning to Improve the Predictive Accuracy of Disease Cure
使用机器学习提高疾病治疗的预测准确性
  • 批准号:
    10654253
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Predictive drivers of new onset, relapse, and progression of human autoimmunity in skin
人类皮肤自身免疫新发、复发和进展的预测驱动因素
  • 批准号:
    10658149
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Developing Personalized Predictive Models of Aggression
开发个性化的攻击性预测模型
  • 批准号:
    10662685
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Predictive multi-scale model of focal adhesion-based durotaxis
基于粘着斑的 durotaxis 的预测多尺度模型
  • 批准号:
    10562825
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
PROJECT 2: Development and Refinement of Predictive Models for Designing Immunotherapy Combination Treatments
项目 2:设计免疫疗法联合治疗的预测模型的开发和完善
  • 批准号:
    10526104
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Reprogramming cell-fate decisions through predictive modeling and synthetic biology
通过预测模型和合成生物学重新编程细胞命运决定
  • 批准号:
    10784558
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Reprogramming cell-fate decisions through predictive modeling and synthetic biology
通过预测模型和合成生物学重新编程细胞命运决定
  • 批准号:
    10344041
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了