DEVELOPMENT OF TREATMENT WITH RESPECT TO IDIOPATHIC SCOLIOSIS

特发性脊柱侧凸治疗的进展

基本信息

项目摘要

Objectives of the present research were as follows.1. To confirm a buckling hypothesis for idiopathic scoliosis that is buckling phenomena induced by growth of vertebral bodies2. Based on the buckling hypothesis, to identify optimum reinforcement parts to prevent the buckling phenomena3. To make it possible to analyze etiology for individuals of patients and to indicate the optimum treatments for them Results were as follows.1. A spinal finite element model with thoracic cage was constructed using 68,582 elements and 84,603 nodes. Material properties of disks and joints were identified by comparing with the experimental results by literatures. From the results of the first to the seventh or eighth buckling modes for 49 cases changing growth parts, it was shown that the fourth and the sixth buckling modes are mechanical etiology for clinical shapes of single and double curves respectively. On the other hand, to observe these buckling phenomena by experiment, mechanical spine models were … More constructed using data of the numerical model. With these models, the change in the second natural vibration eigenvalue was measured by experimental modal analysis. The obtained result showing a decrease in the second natural vibration eigenvalue with the growth of vertebral bodies is confirms of the buckling hypothesis.2. Shape gradient density, sensitivity in another word, with respect to maximization problem of the critical growth of vertebral bodies to the fourth and sixth buckling modes was analyzed by the finite element method. Based on the numerical results, possibility to identify optimum reinforcement parts to prevent the buckling phenomena of various modes was demonstrated.3. To deform the spinal finite element model to fit individuals of patients, a numerical method was developed using formulation of morphing problem of finite element models to three dimensional voxel model constructed from CT or MRI images. Applying the method to fitting two dimensional finite element models to CT images and the spinal finite element model to standing X-ray image of idiopathic scoliosis, applicability to individuals of patients was demonstrated. However, etiology analysis for individuals of patients was left in the future work. Less
本研究的目的如下:1.证实特发性脊柱侧凸的屈曲假说,即椎体生长引起的屈曲现象2。基于屈曲假设,确定防止屈曲现象的最佳加固部位3。为使对患者个体进行病因分析并提出最佳治疗方案成为可能,结果如下.使用68,582个单元和84,603个节点构建了具有胸廓的脊柱有限元模型。通过与文献试验结果的对比,确定了盘和接头的材料性能。对49例改变生长部位的病例进行第一、第七、第八屈曲模式的研究,结果表明:第四、第六屈曲模式分别是单、双曲线临床形态的力学成因。另一方面,为了通过实验观察这些屈曲现象, ...更多信息 使用数值模型的数据构建。利用这些模型,通过实验模态分析测量了第二固有振动特征值的变化。结果表明,随着椎体的生长,第二阶固有振动特征值逐渐减小,这一结果证实了屈曲假设.用有限元法分析了椎体对第四、六屈曲模态的临界增长的形状梯度密度,即敏感性。基于数值计算结果,验证了确定最佳加固部位以防止各种模态屈曲现象的可能性.为了使脊柱有限元模型变形以适应患者个体,开发了一种数值方法,该方法使用有限元模型到从CT或MRI图像构建的三维体素模型的变形问题的公式化。将该方法应用于特发性脊柱侧凸的CT图像和站立位X线图像的二维有限元模型的拟合,证明了该方法对患者个体的适用性。但对患者个体的病因学分析有待于进一步研究。少

项目成果

期刊论文数量(64)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hideyuki Azegami, Yasuhiro Sugai, Masatoshi Shimoda: "Shape Optimization for Buckling (in Japanese)"Transactions of the JSME Series A. 66. 1262-1267 (2000)
Hideyuki Azegami、Yasuhiro Sugai、Masatoshi Shimoda:“屈曲的形状优化(日语)”JSME 系列 A. 66. 1262-1267 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kenzen Takeuchi, Hideyuki Azegami, Shunji Murachi, Junzoh Kitoh, Yoshito Ishida, Noriaki Kawakami, Mitsunori Makino: "Computational Study on the Etiology of Idiopathic Scoliosis Buckling Hypothesis Induced by Bone Modeling against Gravity (in Japanese)"Tr
Kenzen Takeuchi、Hideyuki Azegami、Shunji Murachi、Junzoh Kitoh、Yoshito Ishida、Noriaki Kawakami、Mitsunori Makino:“骨模型对抗重力诱发的特发性脊柱侧凸屈曲假说的病因学计算研究(日语)”Tr
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
竹内謙善: "特発性側彎症の成因に関する数値シミュレーション(多様なモードの成因)"第34回日本側彎症学会演題抄録集. 49-49 (2000)
Kenzen Takeuchi:“特发性脊柱侧凸原因的数值模拟(各种模式的原因)”第 34 届日本脊柱侧凸协会摘要 49-49 (2000)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
竹内謙善: "特発性側彎症の成因に関する計算力学研究(重力に抗する骨構築に起因した座屈説)"日本計算工学会論文集. 4. 153-160 (2002)
Kenzen Takeuchi:“特发性脊柱侧弯病因的计算力学研究(由于骨结构抵抗重力而产生的屈曲理论)”日本计算工程学会会刊 4. 153-160 (2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
笹岡 竜: "特発性側彎症の成因に関する力学模型実験(精密な脊柱力学模型を用いた検討)"脊柱変形,日本側彎症学会誌. 17. 18-22 (2002)
Ryu Sasaoka:“特发性脊柱侧凸原因的机械模型实验(使用精确的机械脊柱模型进行检查)”脊柱畸形,日本脊柱侧凸学会杂志 17. 18-22 (2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AZEGAMI Hideyuki其他文献

AZEGAMI Hideyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AZEGAMI Hideyuki', 18)}}的其他基金

Deepening and applications of shape optimization theories
形状优化理论的深化与应用
  • 批准号:
    17K05140
  • 财政年份:
    2017
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regularization solutions to shape and topology optimization problems of domains for elliptic boundary value problems
椭圆边值问题域形状和拓扑优化问题的正则化解
  • 批准号:
    20540113
  • 财政年份:
    2008
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation into Etiology of Idiopathic Scoliosis
特发性脊柱侧弯病因调查
  • 批准号:
    08650105
  • 财政年份:
    1996
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Verification of Domain Optimization Theory
领域优化理论的验证
  • 批准号:
    06650104
  • 财政年份:
    1994
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Development of a Hybrid Stochastic Finite Element Method with Enhanced Versatility for Uncertainty Quantification
开发一种增强通用性的混合随机有限元方法,用于不确定性量化
  • 批准号:
    23K04012
  • 财政年份:
    2023
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluation of component-based finite element method in connection design
连接设计中基于组件的有限元方法的评估
  • 批准号:
    573136-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4.42万
  • 项目类别:
    University Undergraduate Student Research Awards
Real-time finite element method for interactive design
交互式设计的实时有限元方法
  • 批准号:
    2795756
  • 财政年份:
    2022
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Studentship
Influence line analysis suitable for finite element method: toward improving efficiency of structural design
适用于有限元法的影响线分析:提高结构设计效率
  • 批准号:
    22K04278
  • 财政年份:
    2022
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The High-Order Shifted Boundary Method: A Finite Element Method for Complex Geometries without Boundary-Fitted Grids
高阶移位边界法:一种用于无边界拟合网格的复杂几何形状的有限元方法
  • 批准号:
    2207164
  • 财政年份:
    2022
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Continuing Grant
Analysis of mechanical effect of Hotz plate on maxillary growth in cleft children using finite element method
Hotz钢板对唇裂儿童上颌骨生长力学效应的有限元分析
  • 批准号:
    20K10160
  • 财政年份:
    2020
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Novel Finite Element Method Toolbox for Interface Phenomena in Plasmonic Structures
用于等离子体结构界面现象的新型有限元方法工具箱
  • 批准号:
    2009366
  • 财政年份:
    2020
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Standard Grant
A Fitted Finite Element Method for the Modeling of Complex Materials
复杂材料建模的拟合有限元方法
  • 批准号:
    2012285
  • 财政年份:
    2020
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Continuing Grant
Long-term structural performance assessment of corroded reinforced concrete structures using an integrated approach of probabilistic and finite element method
使用概率和有限元方法综合方法评估腐蚀钢筋混凝土结构的长期结构性能
  • 批准号:
    19K15078
  • 财政年份:
    2019
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Estimation of properties and yield criterion of wood by utilizing multi-scale finite element method
利用多尺度有限元法估算木材的性能和屈服准则
  • 批准号:
    19K15319
  • 财政年份:
    2019
  • 资助金额:
    $ 4.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了