Electrochemical material synthesis in ultra-high vacuum: elementary steps of electrochemical deposition of tantalum and niobium in ionic liquids
超高真空电化学材料合成:离子液体中钽和铌电化学沉积的基本步骤
基本信息
- 批准号:460461495
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Refractory metals such as tantalum and niobium are used in a variety of technical applications.For example, tantalum electrolytic capacitors are particularly important for today'smicroelectronics. The physico-chemical properties of tantalum allows miniaturised capacitors with high capacitance to be produced. Due to the lower occurrence of tantalum, niobium is increasingly used as a replacement material for capacitors. In addition, tantalum is widely used in medicine for implants due to its biocompatibility. Electrochemically, refractory metals cannot be deposited from aqueous and organic solutions due to their relatively negative standard electrode potentials. Hitherto, only high-temperature molten salts have proven to be efficient baths for the electrochemical deposition of several μm thick refractory metals. However, these electrolytes suffer from many technical and economic problems, such as the loss of current efficiency of the electrolysis process due to the partial dissolution of the metal after its deposition. Furthermore, corrosion problems occur at the necessary high temperatures. Due to their wide electrochemical windows (up to 6 V), ionic liquids (ILs) offer themselves aselectrolytes for the electrodeposition of these metals at low temperatures as an alternative. Ithas been shown that Ta can be electrodeposited in thin layers from TaF 5 in a range of air and water stable ionic liquids. The electrodeposition of Ta and of Nb is quite complex and not understood in detail. In addition, the high reactivity of the metals makes it difficult to analyse the deposited layers with ex-situ methods. This project now takes advantage of the fact that ionic liquids generally have a very low vapour pressure and can therefore be investigated with vacuum-based methods such as X-ray photoelectron spectroscopy (XPS) in ultra-high vacuum (UHV). We want to investigate the electrochemical processes during refractory metal deposition in ILs step by step directly in UHV with monochromatic XPS in-situ using tantalum and niobium precursors. A specially designed spectroscopy unit is available for this type of material synthesis. Starting with the analysis of the UHV electrochemistry of the pure ILs, we will then specifically investigate the influence of the precusors on the deposition. This will alsoprovide us with information about the stability of ILs and solutions due to the influence ofelectrochemistry in a very controlled atmosphere. With this approach, we will fundamentally clarify how tantalum and niobium are deposited electrochemically. In the medium-term we would like to show to electrochemical surface engineering ways to deposit refractory metals under mild conditions.
钽和铌等难熔金属用于各种技术应用中。例如,钽电解电容器对当今的微电子学尤为重要。钽的物理化学性质允许生产具有高电容的电容器。由于钽的出现率较低,铌越来越多地用作电容器的替代材料。此外,钽由于其生物相容性而广泛用于植入物的医学中。在电化学上,难熔金属由于其相对负的标准电极电位而不能从水溶液和有机溶液中沉积。迄今为止,只有高温熔盐被证明是几μm厚难熔金属电化学沉积的有效槽。然而,这些电解质存在许多技术和经济问题,例如由于金属在其沉积后部分溶解而导致电解过程的电流效率损失。此外,在必要的高温下会发生腐蚀问题。由于其宽的电化学窗口(高达6 V),离子液体(ILs)提供自己作为电解质,这些金属的电沉积在低温下作为一种替代。结果表明,在一系列对空气和水稳定的离子液体中,TaF5可电沉积出Ta薄层。Ta和Nb的电沉积是相当复杂的,并且没有详细了解。此外,金属的高反应性使得难以用非原位方法分析沉积层。该项目现在利用离子液体通常具有非常低的蒸汽压的事实,因此可以使用基于真空的方法进行研究,例如超高真空(UHV)中的X射线光电子能谱(XPS)。我们想研究的电化学过程中难熔金属沉积在离子液体一步一步直接在超高真空与单色XPS原位使用钽和铌前体。专门设计的光谱单元可用于这种类型的材料合成。从纯离子液体的超高真空电化学分析开始,我们将专门研究前体对沉积的影响。这也将为我们提供有关离子液体和溶液的稳定性的信息,由于电化学的影响,在一个非常受控的气氛。通过这种方法,我们将从根本上阐明钽和铌是如何电化学沉积的。在中期,我们希望展示电化学表面工程方法,在温和条件下存款难熔金属。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Frank Endres其他文献
Professor Dr. Frank Endres的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Frank Endres', 18)}}的其他基金
Interfacial properties and interfacial reactions of ionic liquids at semiconductors, carbonmaterials and their composites for energy applications
能源应用中离子液体在半导体、碳材料及其复合材料中的界面性质和界面反应
- 批准号:
391901927 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Structure and Dynamics of the Interfacial Layers between Ionic Liquids and Metal Electrodes
离子液体与金属电极界面层的结构和动力学
- 批准号:
253493261 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Electrochemical deposition of silicon and germanium from ionic liquids: interfacial processes, compounds and macroporous structures
离子液体中硅和锗的电化学沉积:界面过程、化合物和大孔结构
- 批准号:
248199931 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Electrochemical synthesis and magnetic characterization of Fe1-x-yAlxSiy alloys
Fe1-x-yAlxSiy 合金的电化学合成及磁表征
- 批准号:
265300453 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Structure and dynamics ofthe interfacial layer between ionic liquids and electrode materials
离子液体与电极材料界面层的结构和动力学
- 批准号:
186902953 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Priority Programmes
Interfaces between ionic liquids and low temperature plasmas - A novel type of fluid/fluid interface
离子液体和低温等离子体之间的界面 - 一种新型的流体/流体界面
- 批准号:
29487753 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Priority Programmes
Rastersondengestützte Untersuchung der elektrochemischen Abscheidung von Poly(para)phenylen in Ionischen Flüssigkeiten
扫描探针辅助研究聚对亚苯基在离子液体中的电化学沉积
- 批准号:
14372840 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Grants
Rastersondengestützte Untersuchung der elektrochemischen Abscheidung von Element- und Verbindungshalbleitern aus ionischen Flüssigkeiten
扫描探针支持的离子液体电化学沉积元素和化合物半导体的研究
- 批准号:
5413960 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
Grundlagen der elektrochemischen Abscheidung nanoskalierter Leichtmetalle und Legierungen aus Ionischen Flüssigkeiten
离子液体电化学沉积纳米级轻金属和合金的基础知识
- 批准号:
5417021 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
基于物质流分析的中国石油资源流动过程及碳效应研究
- 批准号:41101116
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
松嫩草地土壤动物多样性及其在凋落物分解中作用和物质能量收支研究
- 批准号:40871120
- 批准年份:2008
- 资助金额:45.0 万元
- 项目类别:面上项目
机翼机身轻质点阵材料的设计分析
- 批准号:90305015
- 批准年份:2003
- 资助金额:40.0 万元
- 项目类别:重大研究计划
相似海外基金
Precise material synthesis by a cooperated molecular system with nano-space and cap-like ions
通过纳米空间和帽状离子协同分子系统精确合成材料
- 批准号:
23H01783 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
EAGER: SSMCDAT2023: Deep learning Gibbs free energy functions to guide solid-state material synthesis
EAGER:SSMCDAT2023:深度学习吉布斯自由能函数指导固态材料合成
- 批准号:
2334275 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Integrated high-throughput material synthesis and characterisation system
集成的高通量材料合成和表征系统
- 批准号:
LE230100070 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Synthesis and Material Hybridization of Pooly Soluble Functional Molecules
易溶功能分子的合成与材料杂交
- 批准号:
22K14677 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Functionalised Organic Polymers: Material Design, Synthesis and Exploitation
功能化有机聚合物:材料设计、合成和开发
- 批准号:
2740876 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Visible-light driven biodegradable polymer monomer synthesis from carbon dioxide as a raw material with by a hybrid catalyst system
以二氧化碳为原料,采用混合催化剂体系合成可见光驱动的可生物降解聚合物单体
- 批准号:
22H01872 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Microbial Ecology-Guided Discovery of Antibacterial Drugs
微生物生态学引导抗菌药物的发现
- 批准号:
10446908 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Excellence in Research - Exploring Frontiers in Novel Material Synthesis at High Pressures: Synthesis and Recovery of Superhard and High Energy-Density Polynitrides
卓越研究 - 探索高压新型材料合成前沿:超硬和高能量密度聚氮化物的合成和回收
- 批准号:
2200670 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Microbial Ecology-Guided Discovery of Antibacterial Drugs
微生物生态学引导抗菌药物的发现
- 批准号:
10565917 - 财政年份:2022
- 资助金额:
-- - 项目类别: