Differential geometry of harmonic maps, minimal submanifolds and Yang-Mills-Higgs equations

调和映射的微分几何、最小子流形和 Yang-Mills-Higgs 方程

基本信息

  • 批准号:
    13440025
  • 负责人:
  • 金额:
    $ 5.12万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2003
  • 项目状态:
    已结题

项目摘要

In this project we had much research activity during the research period and we obtained the following fruitful research results. We expect fitter research progress.The joint work of Ohnita and Udagawa on harmonic maps of finite type was published in the proceedings of the 9-th MSJ-IRI. It is related with the equivalence problem among twisted loop algebras associated with different k-symmetric spaces and we will go to further research. And Ohnita discussed pluriharmonic maps into symmetric spaces from the viewpoint of integrable systems and proved DPW formula for pluriharmonic maps. In the joint work with James Eells on the structure of spaces of harmonic maps we started from the precise proof that the space of harmonic maps between compact real analytic Riemannian manifols is a real analytic space, and we are still working. From the viewpoint of a new area in minimal submanifold theory, Ohnita studies the Hamiltonian stability problem of Lagrangian submanifolds in K"ahler manifolds. By the Lie theoretic method, he showed that compact minimal irreducible symmetric Lagrangian submanifolds embedded in complex projective spaces are Hamiltonian stable. Moreover, we proved that compact symmetric Lagrangian submanifolds embedded in complex Euclidean spaces. And we discuss the relationship between Lagrangian submanifolds and the moment maps. Until now only known Hamiltonian stable Lagrangian submanifolds in complex projective spaces and complex Euclidean spaces. Were real projective subspaces and Clifford tori. However we gave many rich examples of Hamiltonian stable Lagrangian submanifolds in the class of Lagrangian submanifolds with parallel second fundamental form, namely symmetric Lagrangian submanifolds. Koike has succeeded in construction of theory for complex equifocal submanifolds in symmetri spaces and isoparametric submanifolds in Hilbert spaces in the case of noncompact type. It is an answer to a problem posed by Terng-Thorgergsson.
本课题在研究期间进行了大量的研究活动,取得了以下丰硕的研究成果。Ohnita和Udagawa关于有限型调和映射的联合工作发表在第9届MSJ-IRI会议上。它涉及到不同k-对称空间上的扭圈代数之间的等价性问题,我们将进一步研究。Ohnita从可积系统的观点讨论了对称空间中的多重调和映射,并证明了多重调和映射的DPW公式。在联合工作与詹姆斯Eells的结构空间的调和映射我们开始从精确的证明,空间的调和映射之间的紧凑真实的解析黎曼流形是一个真实的解析空间,我们仍在工作。Ohnita从极小子流形理论的一个新领域出发,研究了K“ahler流形中Lagrange子流形的Hamilton稳定性问题。通过李理论的方法,他证明了嵌入复射影空间中的紧致极小不可约对称拉格朗日子流形是Hamilton稳定的。此外,我们还证明了紧致对称拉格朗日子流形嵌入复欧氏空间。并讨论了拉格朗日子流形与矩映射的关系。到目前为止,只知道复射影空间和复欧氏空间中的Hamilton稳定拉格朗日子流形。是真实的射影子空间和Clifford环面。而在具有平行第二基本形式的拉格朗日子流形类中,我们给出了许多Hamilton稳定的拉格朗日子流形,即对称拉格朗日子流形的丰富例子。小池在非紧型的情形下成功地建立了Hilbert空间中的复等焦子流形和等参子流形的理论。这是对Terng-Thorgergsson提出的一个问题的回答。

项目成果

期刊论文数量(54)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Submanifolds with degenerate Gauss mappings in spheres
球体中具有简并高斯映射的子流形
Y.Ohnita: "Gauge-theoretic approach to harmonic maps and subspaces in moduli spaces""Integrable Systems, Geometry and Topology", NCTS volume, International Press. (発表予定).
Y.Ohnita:“模空间中调和映射和子空间的规范理论方法”,“可积系统、几何和拓扑”,NCTS 卷,国际出版社(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
On proper Fredholm submanifolds in a Hilbert space arising from submanifolds in a symmetric space
关于由对称空间子流形产生的希尔伯特空间中的真 Fredholm 子流形
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y.Ohnita;K.Moriya;K.Moriya;R.Miyaoka;N.Koike
  • 通讯作者:
    N.Koike
Y.Ohnita: "HAMILTONIAN STABILITY OF CERTAIN MINIMAL LAGRANGIAN SUBMANIFOLDS IN COMPLEX PROJECTIVE SPACES"Tohoku Math.J.. 55. 583-610 (2003)
Y.Ohnita:“复杂射影空间中某些最小拉格朗日子流形的哈密尔顿稳定性”Tohoku Math.J.. 55. 583-610 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Nagatomo: "Instanton moduli on the quaternion Kahler manifold of type G_2 and singular set"Math.Z.. 243. 243-261 (2003)
Y.Nagatomo:“G_2 型四元数卡勒流形和奇异集上的瞬时模”Math.Z.. 243. 243-261 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OHNITA Yoshihiro其他文献

OHNITA Yoshihiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OHNITA Yoshihiro', 18)}}的其他基金

Research on submanifold geometry and harmonic map theory in symmetric spaces
对称空间子流形几何与调和映射理论研究
  • 批准号:
    24540090
  • 财政年份:
    2012
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on Submanifold Theory via Infinite Dimensional Methods
基于无限维方法的子流形理论研究
  • 批准号:
    17204006
  • 财政年份:
    2005
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Energy of knots and conformal geometry
结的能量和共形几何
  • 批准号:
    15540088
  • 财政年份:
    2003
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
HARMONIC MAPS INTO SYMMETRIC SPACES AND GEOMETRY OF MODULI SPACES
调和映射到对称空间和模空间的几何
  • 批准号:
    11640088
  • 财政年份:
    1999
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

New Development of Submanifold Geometry and Harmonic Map Theory in Symmetric Spaces
对称空间子流形几何与调和映射理论的新进展
  • 批准号:
    15K04851
  • 财政年份:
    2015
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on submanifold geometry and harmonic map theory in symmetric spaces
对称空间子流形几何与调和映射理论研究
  • 批准号:
    24540090
  • 财政年份:
    2012
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regularity for the evolutionary p-Laplace operator and global existence of the p-harmonic map flows
演化 p-拉普拉斯算子的正则性和 p 调和映射流的全局存在性
  • 批准号:
    24540215
  • 财政年份:
    2012
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A regularity criterion for the harmonic map flows and asymptotic analysis for singularity
调和映射流的正则判据和奇点的渐近分析
  • 批准号:
    21540222
  • 财政年份:
    2009
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mathematical research on regularity and singularity for the m-harmonic map flows and energy quantization phenomenon
调和图流规律性与奇异性及能量量子化现象的数学研究
  • 批准号:
    19540221
  • 财政年份:
    2007
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dirichlet space and analysis of harmonic map over the space of Gromov-Hausdorff limit spaces
狄利克雷空间与格罗莫夫-豪斯多夫极限空间上的调和映射分析
  • 批准号:
    13640220
  • 财政年份:
    2001
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Regularity, Convergence, and Uniqueness Problems for Harmonic Map Flows
调和映射流的正则性、收敛性和唯一性问题
  • 批准号:
    0096062
  • 财政年份:
    1999
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Standard Grant
Regularity, Convergence, and Uniqueness Problems for Harmonic Map Flows
调和映射流的正则性、收敛性和唯一性问题
  • 批准号:
    9706855
  • 财政年份:
    1997
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Standard Grant
S^2-値のharmonic mapの正則性について
关于S^2值的调和图的规律性
  • 批准号:
    04740074
  • 财政年份:
    1992
  • 资助金额:
    $ 5.12万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了