HARMONIC MAPS INTO SYMMETRIC SPACES AND GEOMETRY OF MODULI SPACES
调和映射到对称空间和模空间的几何
基本信息
- 批准号:11640088
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Harmonic maps into symmetric spaces have several characteristic properties that harmonic maps into general Riemannian manifolds do not have. For example such harmonic map equation can be formulated as the zero curvature equation, the Lax equation and gauge-theoretic equations. As an approach for harmonic maps into symmeric spaces, we investigate the gauge-theoretic equations associated to such harmonic maps and the structure and the geometry of the moduli spaces of their solutions, and we obatined several results. I have written up the paper entitled with "Geoemtry of the moduli spaces of harmonic maps into Lie groups via gauge theory over Riemann surfaces" This work was estimated by foreign researchers as it is very interesting and imformative. Furthermore, we studied harmonic maps of finite type which is a class of harmonic maps into compact symmetric spaces. We introduced the notion of harmonic maps of generalized finite type from compact Riemann surfaces to compact k-symmetric spac … More es, and we proved that such a harmonic map is the composition of the Abel map from a compact Riemann surface to the Jacobi variety and a pluriharmonic map from the Jacobi variety to a k-symmetric space. We have written up the paper entitled with "Harmonic maps of finite type into generalized flag manifolds and twistor fibrations" They will be published in Inter. J. Math. And J. London Math. Soc., respectively. On the other hand, as the research related to integrable systems, we give our attention to the relationship between Frobenius manifolds and pluriharmonic maps. It is now in progress to study Hamiltonian stability problem for compact minimal Lagrangian submanifolds in complex projective spaces and Hermitian symmetric spaces constructed by using the symmetric space theory and we obtain new results on it.The collaborator, Makiko Tanaka, treated symmetric R-spaces with nice properties in symmetric spaces and gave the new characterization of symmetric R-spaces from the viewpoint of the basic theory in the category of symmetric spaces through stays at Max-Planck-Institut fuer Mathematik in Bonn, Germany etc. The collaborator, Masatoshi Kokubu,showed new results on propeties and construction of complete isotropic minimal surfaces in odd-dimensional Euclidean space. The collaborator, Hideko Hashiguchi, gave a research report on problems about moduli space of unitons corresponding to harmonic maps from a Riemann sphere into the unitary group at this research meeting. Less
谐波图中的对称空间具有几种特征性能,可谐波地图成一般的riemannian歧管。例如,此类谐波映射到零曲率方程,宽松方程和规格理论方程。作为谐波映射到符号空间的方法,我们研究了与此类谐波图以及其解决方案模量空间的结构和几何形状相关的量规理论方程,并遵守了几个结果。我已经写了题为“谐波图的模态空间的地理学空间,通过仪表理论通过riemann表面进行谎言组”,这项工作是由外国研究人员估算的,因为它非常有趣且具有丰富的信息。此外,我们研究了有限类型的谐波图,这是一类谐波图,分为紧凑的对称空间。我们介绍了从紧凑的Riemann表面的广义有限类型的谐波图的概念,以紧凑的K-对称空间……更多的ES,我们证明了这样的谐波图是从紧凑型Riemann Surface到Jacobi品种的ABEL地图的组成,从Jacobi品种和来自Jacobi品种的Pluriharmonic Map到jacobi valters to k-sym-emptrics k-sympremmetmemmetmemmetmemmetmemmets。我们已经写了题为“有限类型的谐波图成为通用的标志歧管和曲折纤维”的论文。 J. Math。和J.伦敦数学。另一方面,作为与整合系统有关的研究,我们关注了Frobenius歧管和Pluriharmonic地图之间的关系。现在正在进行研究哈密顿的稳定性问题,用于复杂的投影空间中的紧凑型拉格朗日式亚曼福尔德和通过使用对称空间理论所构建的赫米利亚对称空间,并在其上获得新的结果。通过在德国波恩的Max-Planck-Institut Fuer Mathematik暂停的对称空间。合作者Hideko Hashiguchi在这次研究会议上提供了有关与Riemann Sphere相对应的统一地图的统一地图的模量空间的研究报告。较少的
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Nagatomo: "Representation theory and ADHM-construction on quaternion symmetric spaces"Trans. Amer. Math. Soc.. (to appear).
Y.Nagatomo:“四元数对称空间上的表示理论和 ADHM 构造”Trans。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Ohnita: "Gauge-theoretic equations for symmertric spaces and certain minimal submanifolds in moduli spaces"Research Notes in Math.. 413. 193-209 (2000)
Y.Ohnita:“对称空间和模空间中某些最小子流形的规范理论方程”数学研究笔记.. 413. 193-209 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Ohnita: "Geometry of the modult spaces of harmonic maps into Lie groups via gauge theory over Riemann surfaces"International J.Math. 12(発表予定). (2000)
Y.Ohnita:“通过黎曼曲面上的规范理论将调和空间映射成李群的几何”International J.Math 12(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Nagano, M.S.Tanaka: "The involutions of compact symmetric spaces V"Tokyo J.Math. 23. 403-416 (2000)
T.Nagano,M.S.Tanaka:“紧致对称空间 V 的对合”Tokyo J.Math。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.S.Tanaka: "The involutions of compact symmetric spaces,V"Tokyo J.Math.. 23. 403-416 (2000)
M.S.Tanaka:“紧对称空间的对合,V”Tokyo J.Math.. 23. 403-416 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OHNITA Yoshihiro其他文献
OHNITA Yoshihiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OHNITA Yoshihiro', 18)}}的其他基金
Research on submanifold geometry and harmonic map theory in symmetric spaces
对称空间子流形几何与调和映射理论研究
- 批准号:
24540090 - 财政年份:2012
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Submanifold Theory via Infinite Dimensional Methods
基于无限维方法的子流形理论研究
- 批准号:
17204006 - 财政年份:2005
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Energy of knots and conformal geometry
结的能量和共形几何
- 批准号:
15540088 - 财政年份:2003
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Differential geometry of harmonic maps, minimal submanifolds and Yang-Mills-Higgs equations
调和映射的微分几何、最小子流形和 Yang-Mills-Higgs 方程
- 批准号:
13440025 - 财政年份:2001
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似国自然基金
非对称性空间分体式—阴极靶向制氢和阳极化工中间体有机电合成新体系的构建及机理研究
- 批准号:22308363
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
非交换对称空间的若干几何性质与导子问题
- 批准号:12301160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深空探测自主导航的非对称空间外差光谱测速方法研究
- 批准号:42304192
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于中国空间站时钟比对实验检验洛伦兹对称性
- 批准号:12305062
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抛物Higgs丛模空间的镜像对称性质研究
- 批准号:12301056
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Pluriharmonic maps into a compact symmetric space and integrable systems
多谐波映射到紧对称空间和可积系统
- 批准号:
22K03293 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Submanifold theory related to the twistor space of quaternionic symmetric spaces
与四元对称空间扭量空间相关的子流形理论
- 批准号:
20K03575 - 财政年份:2020
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on holomorphic mappings on the homogeneous unit ball in finite or infinite dimensional complex Banach spaces
有限或无限维复Banach空间中齐次单位球的全纯映射研究
- 批准号:
20K03640 - 财政年份:2020
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric constants of Banach Spaces and their applications
Banach空间的几何常数及其应用
- 批准号:
17K05287 - 财政年份:2017
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Moving in time and space – Do (a)symmetric time-space mappings depend on modality-specific processing?
时间和空间的移动â(a)对称时空映射是否依赖于特定模态的处理?
- 批准号:
256549680 - 财政年份:2014
- 资助金额:
$ 2.3万 - 项目类别:
Research Grants