HARMONIC MAPS INTO SYMMETRIC SPACES AND GEOMETRY OF MODULI SPACES
调和映射到对称空间和模空间的几何
基本信息
- 批准号:11640088
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Harmonic maps into symmetric spaces have several characteristic properties that harmonic maps into general Riemannian manifolds do not have. For example such harmonic map equation can be formulated as the zero curvature equation, the Lax equation and gauge-theoretic equations. As an approach for harmonic maps into symmeric spaces, we investigate the gauge-theoretic equations associated to such harmonic maps and the structure and the geometry of the moduli spaces of their solutions, and we obatined several results. I have written up the paper entitled with "Geoemtry of the moduli spaces of harmonic maps into Lie groups via gauge theory over Riemann surfaces" This work was estimated by foreign researchers as it is very interesting and imformative. Furthermore, we studied harmonic maps of finite type which is a class of harmonic maps into compact symmetric spaces. We introduced the notion of harmonic maps of generalized finite type from compact Riemann surfaces to compact k-symmetric spac … More es, and we proved that such a harmonic map is the composition of the Abel map from a compact Riemann surface to the Jacobi variety and a pluriharmonic map from the Jacobi variety to a k-symmetric space. We have written up the paper entitled with "Harmonic maps of finite type into generalized flag manifolds and twistor fibrations" They will be published in Inter. J. Math. And J. London Math. Soc., respectively. On the other hand, as the research related to integrable systems, we give our attention to the relationship between Frobenius manifolds and pluriharmonic maps. It is now in progress to study Hamiltonian stability problem for compact minimal Lagrangian submanifolds in complex projective spaces and Hermitian symmetric spaces constructed by using the symmetric space theory and we obtain new results on it.The collaborator, Makiko Tanaka, treated symmetric R-spaces with nice properties in symmetric spaces and gave the new characterization of symmetric R-spaces from the viewpoint of the basic theory in the category of symmetric spaces through stays at Max-Planck-Institut fuer Mathematik in Bonn, Germany etc. The collaborator, Masatoshi Kokubu,showed new results on propeties and construction of complete isotropic minimal surfaces in odd-dimensional Euclidean space. The collaborator, Hideko Hashiguchi, gave a research report on problems about moduli space of unitons corresponding to harmonic maps from a Riemann sphere into the unitary group at this research meeting. Less
到对称空间的调和映射具有到一般黎曼流形的调和映射所不具有的几个特征性质。例如,这种调和映射方程可以表示为零曲率方程、Lax方程和规范理论方程。作为研究调和映射到对称空间的一种方法,我们研究了与调和映射相关的规范论方程及其解的模空间的结构和几何,得到了几个结果.我已经写了题为“几何模空间的调和映射到李群通过规范理论在黎曼曲面”这一工作是由外国研究人员估计,因为它是非常有趣和启发性的文件。进一步研究了紧对称空间中的一类调和映射--有限型调和映射。引入了从紧Riemann曲面到紧k-对称空间的广义有限型调和映射的概念, ...更多信息 证明了这样的调和映射是紧致Riemann曲面到Jacobi簇的Abel映射和Jacobi簇到k-对称空间的多重调和映射的合成.我们已经写了题为“调和映射有限型到广义旗流形和扭量纤维”的文件,他们将发表在国际。数学和伦敦数学学会,分别另一方面,作为与可积系统相关的研究,我们关注Frobenius流形与多重调和映射之间的关系。利用对称空间理论构造了复射影空间和Hermitian对称空间中的紧致极小Lagrangian子流形,并研究了其Hamilton稳定性问题,得到了新的结果.讨论了对称R-空间在对称空间中的良好性质,并给出了对称R-空间的新刻画。通过在德国波恩马克斯普朗克数学研究所等地停留,从对称空间范畴的基本理论的角度对空间进行了研究。合作者Masatoshi Kokubu展示了关于奇维欧几里得空间中完全各向同性极小曲面的性质和构造的新结果。合作者Hashiguchi Hideko在这次研究会上做了关于从黎曼球面到酉群的调和映射对应的酉的模空间问题的研究报告。少
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Ohnita: "Gauge-theoretic equations for symmertric spaces and certain minimal submanifolds in moduli spaces"Research Notes in Math.. 413. 193-209 (2000)
Y.Ohnita:“对称空间和模空间中某些最小子流形的规范理论方程”数学研究笔记.. 413. 193-209 (2000)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Ohnita: "Geometry of the modult spaces of harmonic maps into Lie groups via gauge theory over Riemann surfaces"International J.Math. 12(発表予定). (2000)
Y.Ohnita:“通过黎曼曲面上的规范理论将调和空间映射成李群的几何”International J.Math 12(待提交)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Nagatomo: "Representation theory and ADHM-construction on quaternion symmetric spaces"Trans. Amer. Math. Soc.. (to appear).
Y.Nagatomo:“四元数对称空间上的表示理论和 ADHM 构造”Trans。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Ohnita: "Actions of loop groups, deformations of harmonic maps, and their application's"Amer.Math.Soc, Translations Ser.2. 183. 33-50 (1998)
Y.Ohnita:“循环群的作用、调和映射的变形及其应用”Amer.Math.Soc,翻译系列 2。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Nagano, M.S.Tanaka: "The involutions of compact symmetric spaces V"Tokyo J.Math. 23. 403-416 (2000)
T.Nagano,M.S.Tanaka:“紧致对称空间 V 的对合”Tokyo J.Math。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OHNITA Yoshihiro其他文献
OHNITA Yoshihiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OHNITA Yoshihiro', 18)}}的其他基金
Research on submanifold geometry and harmonic map theory in symmetric spaces
对称空间子流形几何与调和映射理论研究
- 批准号:
24540090 - 财政年份:2012
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on Submanifold Theory via Infinite Dimensional Methods
基于无限维方法的子流形理论研究
- 批准号:
17204006 - 财政年份:2005
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Energy of knots and conformal geometry
结的能量和共形几何
- 批准号:
15540088 - 财政年份:2003
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Differential geometry of harmonic maps, minimal submanifolds and Yang-Mills-Higgs equations
调和映射的微分几何、最小子流形和 Yang-Mills-Higgs 方程
- 批准号:
13440025 - 财政年份:2001
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Pluriharmonic maps into a compact symmetric space and integrable systems
多谐波映射到紧对称空间和可积系统
- 批准号:
22K03293 - 财政年份:2022
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Grassmann geomety of surfaces in a Riemannian symmetric space
黎曼对称空间中曲面的格拉斯曼几何
- 批准号:
23540091 - 财政年份:2011
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of submanifolds in a symmetric space by using infinite dimensional geometry
利用无限维几何研究对称空间中的子流形
- 批准号:
18540099 - 财政年份:2006
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Irreducible unitary representation of non compact quantum group SUq(1,1) and its quantum symmetric space
非紧量子群SUq(1,1)及其量子对称空间的不可约酉表示
- 批准号:
11440052 - 财政年份:1999
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Sciences: The Horocycle Radon Transform on a Symmetric Space
数学科学:对称空间上的 Horocycle Radon 变换
- 批准号:
8896108 - 财政年份:1987
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Mathematical Sciences: The Horocycle Radon Transform on a Symmetric Space
数学科学:对称空间上的 Horocycle Radon 变换
- 批准号:
8601965 - 财政年份:1986
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant
Algebraic-geometrical and arithmetical study of a quotient space of a Riemannian symmetric space by an arithmetic group
通过算术群对黎曼对称空间的商空间进行代数几何和算术研究
- 批准号:
60540038 - 财政年份:1985
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Mathematical Sciences: Analysis on Fundamental Domains for GL (n,Z) in the Symmetric Space of Positive Matrices and Related Questions
数学科学:正矩阵对称空间中GL(n,Z)的基本域分析及相关问题
- 批准号:
8303128 - 财政年份:1983
- 资助金额:
$ 2.3万 - 项目类别:
Standard Grant














{{item.name}}会员




