Mathematical analysis of scattering phenomena and inverse problems
散射现象及反问题的数学分析
基本信息
- 批准号:13440048
- 负责人:
- 金额:$ 5.31万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This reserach project aimed at the development of the study of inverse problems arising from the mathematical analysis of scattering phenoma. The main theme was the study of spectra of differential operators. As a main conference project, we have organized an international workshop of inverse problems on October 2002 at Kyoto, where leading reserchers of this field came together, and promoted much interest on this filed in Japan.The head investigator proposed a new method for solving multi-dimensional inverse problems. The essential idea consists in embedding the inverse boundary value problem in R^n to the hyperbolic space. This new method introduced new view points of inverse problems. He discussed the inverse problem for the local perturbation of conformal metrics on hyperbolic manifolds. As an interestring by-product, he proved that in the boundary value problems in R^3, the electric conductivities can be identified locally from the knowledge of local Dirichlet-Neumann map. This hyperbolc space approach can also be applied to the problem of identification of locations of inclusions, and the reconstruction problem for linearized equations. They are expected to have applications to medical science. Okada studied numerical harmonic analysis, in particular, spline functions, wavelet analysis and numerical computation. Mochizuki studied inverse problems of reconstructing coefficients of Dirac operators from the data in finite intervals. Yoshitomi studied the properties of eigenvalues of the Laplacian on the 2-dimensional domain with crack, and also those of band region. Nakamaura studied the inverse problem of identifying the obstacle from the refelcted waves and also the inverse problem for elastic equations. Tamura studied the Aharonov-Bohm effect for the 2-diemnsional Schrodinger operators with Dirac type magnetic fields.
本研究旨在发展由散射现象的数学分析所引起的反问题的研究。主要的主题是研究谱的微分算子。2002年10月在日本的京都举办了一次国际反问题研讨会,作为会议的主要项目之一,该研讨会汇集了该领域的主要研究人员,促进了日本对该领域的兴趣,主要研究人员提出了一种求解多维反问题的新方法。其基本思想是将R ^n中的反边值问题嵌入到双曲空间中。这种新方法引入了反问题的新观点。他讨论了反问题的局部扰动共形度量双曲流形。作为一个有趣的副产品,他证明了在R^3中的边值问题中,电导率可以从局部狄利克雷-诺依曼映射的知识中局部地确定出来。这种双曲空间方法也可以应用于夹杂物位置的识别问题,以及线性化方程的重构问题。它们有望在医学上得到应用。冈田研究数值谐波分析,特别是样条函数,小波分析和数值计算。Mochizuki研究了由有限区间数据重构Dirac算子系数的反问题。Yoshitomi研究了二维裂纹区域上的Laplacian特征值的性质,也研究了带状区域的特征值的性质。Nakamaura研究了从反射波中识别障碍物的反问题以及弹性方程的反问题。Tamura研究了Dirac型磁场作用下二维Schrodinger算子的Aharonov-Bohm效应。
项目成果
期刊论文数量(56)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Mochizuki, I.Trooshin: "Inverse problem for interior spectral data of the Dirac operator on a finite interval"Publ.R.I.M.S.Kyoto Univ.. 38. 387-395 (2002)
K.Mochizuki, I.Trooshin:“有限区间上狄拉克算子的内部光谱数据的反演问题”Publ.R.I.M.S.Kyoto Univ.. 38. 387-395 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Isozaki, G.Uhlmann: "Hyperbolic geometry and local Dirichlet-Neumann map"Advances in Mathematics. (to appear).
H.Isozaki、G.Uhlmann:“双曲几何和局部狄利克雷-诺伊曼图”数学进展。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.Chang, J.Lin, G.Nakamura: "Inverse scattering for multiple obstacles"Theoritical and Applied Mechanics. 51. 401-410 (2002)
J.Chang、J.Lin、G.Nakamura:“多重障碍物的逆散射”理论与应用力学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Isozaki: "Asymptotic properties of solutions to 3-particle schrodinger equations"Communications in Mathematical Physics. 222. 371-413 (2001)
H.Isozaki:“3 粒子薛定谔方程解的渐近性质”数学物理通讯。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Okada: "A wave let collocation method for evolution equation with energy conservation property"Bull Sci.Math.. 127. 569-583 (2003)
M.Okada:“具有能量守恒性质的演化方程的波让配置方法”Bull Sci.Math.. 127. 569-583 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISOZAKI Hiroshi其他文献
ISOZAKI Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISOZAKI Hiroshi', 18)}}的其他基金
Spectral and inverse scattering theory on non-compact manifolds
非紧流形上的谱和逆散射理论
- 批准号:
21340028 - 财政年份:2009
- 资助金额:
$ 5.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of numerical computation brought by spectral theory and geometry
谱理论和几何带来数值计算的发展
- 批准号:
18340034 - 财政年份:2006
- 资助金额:
$ 5.31万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Local Dirichlet - Neumann map and the reconstruction algorithm
局部狄利克雷-诺伊曼图及重建算法
- 批准号:
16540166 - 财政年份:2004
- 资助金额:
$ 5.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetic diagnosis of gastrointestinal cancer using peripheral blood DNA or ascitis DNA
利用外周血DNA或腹水DNA进行胃肠道癌症的基因诊断
- 批准号:
11671240 - 财政年份:1999
- 资助金额:
$ 5.31万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A STUDY ON LIVER INJURY CAUSED BY LIVER ISCHEMIA AND SEPTICEMIA
肝缺血和败血症引起的肝损伤的研究
- 批准号:
05671098 - 财政年份:1993
- 资助金额:
$ 5.31万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
$ 5.31万 - 项目类别:
Research Grant
Travel: US Participation at the 11th International Conference on Inverse Problems in Engineering
出差:美国参加第11届工程反问题国际会议
- 批准号:
2347919 - 财政年份:2024
- 资助金额:
$ 5.31万 - 项目类别:
Standard Grant
Understanding, Predicting and Controlling AI Hallucination in Diffusion Models for Image Inverse Problems
理解、预测和控制图像逆问题扩散模型中的 AI 幻觉
- 批准号:
2906295 - 财政年份:2024
- 资助金额:
$ 5.31万 - 项目类别:
Studentship
Development of effective and accurate non-conventional solution methods for shape inverse problems: theory and numerics
开发有效且准确的形状反问题非常规求解方法:理论和数值
- 批准号:
23K13012 - 财政年份:2023
- 资助金额:
$ 5.31万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Forward and Inverse Problems for Topological Insulators and Kinetic Equations
拓扑绝缘体和动力学方程的正逆问题
- 批准号:
2306411 - 财政年份:2023
- 资助金额:
$ 5.31万 - 项目类别:
Standard Grant
Conference: CBMS Conference: Inverse Problems and Nonlinearity
会议:CBMS 会议:反问题和非线性
- 批准号:
2329399 - 财政年份:2023
- 资助金额:
$ 5.31万 - 项目类别:
Standard Grant
Gaussian process regression for Bayesian inverse problems
贝叶斯逆问题的高斯过程回归
- 批准号:
EP/X01259X/1 - 财政年份:2023
- 资助金额:
$ 5.31万 - 项目类别:
Research Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
- 批准号:
2324369 - 财政年份:2023
- 资助金额:
$ 5.31万 - 项目类别:
Standard Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
- 批准号:
2324368 - 财政年份:2023
- 资助金额:
$ 5.31万 - 项目类别:
Standard Grant
OAC Core: The Best of Both Worlds: Deep Neural Operators as Preconditioners for Physics-Based Forward and Inverse Problems
OAC 核心:两全其美:深度神经算子作为基于物理的正向和逆向问题的预处理器
- 批准号:
2313033 - 财政年份:2023
- 资助金额:
$ 5.31万 - 项目类别:
Standard Grant