Local Dirichlet - Neumann map and the reconstruction algorithm
局部狄利克雷-诺伊曼图及重建算法
基本信息
- 批准号:16540166
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We studied the inverse problem of reconstructing the electric conductivity of a body from the measurement of the voltage and current on the surface. Mathematically, this is formulated as the problem of determining the coefficients of some elliptic equation from the knowledge of the solution on the boundary. This has important applications in medical science to determine the location of tumor by the measurement of the weak current by the electrodes put on the body of the patient, and also in non-destructive technological problems. We first established the theory to determine the location of the discontinuous part of the electric conductivity when it is large compared to the back ground material, and found the algorithm of numerical computation. Under the collaboration of Dr.Samuli Siltanen from Finland, and two Japanese numerical analysts, Dr.Ide and Dr.Nakata, we did numerical computation in 2-dimensional rectangular domain, and semi circular domain by using analytical formula and then … More by the finite element method. The result is extremely good and proves the efficiency of our idea.We also constructed the mathematical theory related with the well-known Barber-Brown algorithm for the reconstruction of the electric conductivity. This is very significant, since this algorithm is known to be effective although its mathematical background was unknown. To study this algorithm the important role is played by the boundary value problem in the horosphere in 3-dimensional hyperbolic space. Some parts of our results were presented in the annual meeting of the Japanese Mathematical Society, in the conference of theory and applied mechanics, and also in the conference on inverse problems held in England. Kakehi studied the Radon transform on Affine Grassmanian manifolds with Gonzalez. Kametaka studied the best constant in the Sobolev inequality. To represent these results and also to exchange information on the recent developments, we organized a "Mathematical Analysis Seminar" on the inverse problem with 20 participants from Japan and also 5 foreign researchers. Less
我们研究了通过测量表面电压和电流来重建物体电导率的逆问题。在数学上,这被表述为根据边界解的知识确定某些椭圆方程的系数的问题。这在医学科学中具有重要的应用,通过测量放置在患者身上的电极的弱电流来确定肿瘤的位置,并且在非破坏性技术问题中也有重要的应用。我们首先建立了当电导率与背景材料相比较大时确定电导率不连续部分位置的理论,并找到了数值计算的算法。在芬兰的Samuli Siltanen博士和两位日本数值分析师Dr.Ide和Dr.Nakata的合作下,我们利用解析公式进行了二维矩形域和半圆形域的数值计算,然后利用有限元方法进行了数值计算。结果非常好,证明了我们的想法的有效性。我们还构建了与著名的Barber-Brown算法相关的数学理论,用于重建电导率。这是非常重要的,因为尽管其数学背景未知,但已知该算法是有效的。 3维双曲空间星球面的边值问题在该算法的研究中发挥了重要作用。我们的部分成果在日本数学会年会、理论与应用力学会议以及在英国举行的反问题会议上发表。 Kakehi 与 Gonzalez 一起研究了仿射格拉斯曼流形上的 Radon 变换。 Kametaka 研究了 Sobolev 不等式中的最佳常数。为了展示这些结果并交流最新进展的信息,我们组织了一次关于反问题的“数学分析研讨会”,有 20 名日本参与者和 5 名外国研究人员参加。较少的
项目成果
期刊论文数量(42)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hyperbolic geometry and local Dirichlet-Nuemann map
双曲几何和局部 Dirichlet-Nuemann 映射
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Hiroshi Isozaki;Gunther Uhlmann
- 通讯作者:Gunther Uhlmann
Numerical method for the detection of inclusions for localized Dirichlet-Neumann map
局域狄利克雷-诺依曼图夹杂物检测的数值方法
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:T.Ide;H.Isozaki;S.Nakata;S.Siltanen;G.Uhlmann
- 通讯作者:G.Uhlmann
Numerical experiments of the detection of inclusions form the localized data in two dimensions
二维局部数据中夹杂物检测的数值实验
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:T.Ide;H.Isozaki;S.Nakata;S.Siltanen
- 通讯作者:S.Siltanen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISOZAKI Hiroshi其他文献
ISOZAKI Hiroshi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISOZAKI Hiroshi', 18)}}的其他基金
Spectral and inverse scattering theory on non-compact manifolds
非紧流形上的谱和逆散射理论
- 批准号:
21340028 - 财政年份:2009
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of numerical computation brought by spectral theory and geometry
谱理论和几何带来数值计算的发展
- 批准号:
18340034 - 财政年份:2006
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical analysis of scattering phenomena and inverse problems
散射现象及反问题的数学分析
- 批准号:
13440048 - 财政年份:2001
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Genetic diagnosis of gastrointestinal cancer using peripheral blood DNA or ascitis DNA
利用外周血DNA或腹水DNA进行胃肠道癌症的基因诊断
- 批准号:
11671240 - 财政年份:1999
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A STUDY ON LIVER INJURY CAUSED BY LIVER ISCHEMIA AND SEPTICEMIA
肝缺血和败血症引起的肝损伤的研究
- 批准号:
05671098 - 财政年份:1993
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Statistical aspects of non-linear inverse problems
非线性反问题的统计方面
- 批准号:
EP/Y030249/1 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Research Grant
Travel: US Participation at the 11th International Conference on Inverse Problems in Engineering
出差:美国参加第11届工程反问题国际会议
- 批准号:
2347919 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Understanding, Predicting and Controlling AI Hallucination in Diffusion Models for Image Inverse Problems
理解、预测和控制图像逆问题扩散模型中的 AI 幻觉
- 批准号:
2906295 - 财政年份:2024
- 资助金额:
$ 2.24万 - 项目类别:
Studentship
Development of effective and accurate non-conventional solution methods for shape inverse problems: theory and numerics
开发有效且准确的形状反问题非常规求解方法:理论和数值
- 批准号:
23K13012 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Forward and Inverse Problems for Topological Insulators and Kinetic Equations
拓扑绝缘体和动力学方程的正逆问题
- 批准号:
2306411 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Conference: CBMS Conference: Inverse Problems and Nonlinearity
会议:CBMS 会议:反问题和非线性
- 批准号:
2329399 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Gaussian process regression for Bayesian inverse problems
贝叶斯逆问题的高斯过程回归
- 批准号:
EP/X01259X/1 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Research Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
- 批准号:
2324369 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
Collaborative Research: Breaking the 1D barrier in radiative transfer: Fast, low-memory numerical methods for enabling inverse problems and machine learning emulators
合作研究:打破辐射传输中的一维障碍:用于实现逆问题和机器学习模拟器的快速、低内存数值方法
- 批准号:
2324368 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant
OAC Core: The Best of Both Worlds: Deep Neural Operators as Preconditioners for Physics-Based Forward and Inverse Problems
OAC 核心:两全其美:深度神经算子作为基于物理的正向和逆向问题的预处理器
- 批准号:
2313033 - 财政年份:2023
- 资助金额:
$ 2.24万 - 项目类别:
Standard Grant