Statistical theory for Gaussian process function approximation based on theory of image restoration and its application

基于图像复原理论的高斯过程函数逼近统计理论及其应用

基本信息

项目摘要

It had been usually assumed that the additive noise does not correlated with each other in the frameworks of the image restoration and function approximation. We instigated the use of the Baysian inference to restore noise-degraded images under conditions of spatially correlated noise. We obtained the expected value of a restored image and obtained the optimal hyper-parameters. We discussed whether the conventional spatially uncorrelated noise model could cope with the spatially correlated noise or not, and found it could not. Furthermore, we discussed the hyper-parameter estimation based on the maximum marginalized likelihood method, and found an iterative algorithm for obtaining the maximum can not be converged. We thought the reason is singularity in the model. Thus, we concentrated the parameter estimation for hierarchical models with singular structure. Using two-layer neural networks, we investigate influences of singularities on dynamics of standard gradient learning and natural gradient learning under various learning conditions. In the standard gradient learning, we found a quasi-plateau phenomenon, which is severer than the well known plateau in some cases. The slow convergence clue to the quasi-plateau and plateau becomes extremely serious when an optimal point is in a neighborhood of a singularity. In the natural gradient learning, however, the quasi-plateau and plateau are not observed and convergence speed is hardly affected by singularity.
在图像恢复和函数逼近的框架中,通常假设加性噪声彼此不相关。我们提倡使用贝叶斯推理在空间相关噪声的条件下恢复噪声退化的图像。我们获得了恢复图像的期望值并获得了最优的超参数。我们讨论了传统的空间不相关噪声模型是否可以处理空间相关噪声,结果发现它不能。此外,我们讨论了基于最大边缘化似然法的超参数估计,发现获取最大值的迭代算法无法收敛。我们认为原因是模型中的奇点。因此,我们集中了具有奇异结构的分层模型的参数估计。使用两层神经网络,我们研究了各种学习条件下奇点对标准梯度学习和自然梯度学习动态的影响。在标准梯度学习中,我们发现了一种准高原现象,在某些情况下比众所周知的高原现象更严重。当最优点位于奇点附近时,准平台和平台的缓慢收敛线索变得极其严重。然而,在自然梯度学习中,没有观察到准平台和平台,并且收敛速度几乎不受奇异性的影响。

项目成果

期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.Inoue, H.Park, M.Okada: "On-line learning theory of soft committee machines with correlated hidden units. -Steepest gradient descent and natural gradient descent-"Journal of Physical Society of Japan. (印刷中).
M.Inoue、H.Park、M.Okada:“具有相关隐藏单元的软委员会机器的在线学习理论。-最速梯度下降和自然梯度下降-”日本物理学会杂志(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Tatsuto Murayama: "One-step RSB scheme for the rate distortion functions."Journal of Physics A: Mathematical and General. vol.36. 11123-11130 (2003)
Tatsuto Murayama:“速率畸变函数的一步 RSB 方案。”物理学杂志 A:数学与综合。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kazuyuki Hara: "On-line learning through simple perceptron learning with a margin"Neural Networks,. vol.17, No.2. 215-223 (2004)
Kazuyuki Hara:“通过简单感知器学习进行在线学习”神经网络,。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kazuyuki Hara, Masato Okada: "On-line learning through simple perceptron learning with a margin"Neural Networks. vol.17, No.2. 215-223 (2004)
Kazuyuki Hara、Masato Okada:“通过简单感知器学习进行在线学习”神经网络。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hyeyoung Park, Masato Inoue, Masato Okada: "On-line learning dynamics of two-layer neural networks with unidentifiable parameters."Journal of Physics A : Mathematical and General. vol.36. 11753-11764 (2003)
Hyeyoung Park、Masato Inoue、Masato Okada:“具有不可识别参数的两层神经网络的在线学习动态。”《物理学杂志 A:数学与综合》。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKADA Masato其他文献

Likelihood Identification of High-Beta Disruption in JT-60U
JT-60U 中高 Beta 破坏的可能性识别
  • DOI:
    10.1585/pfr.16.1402073
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    YOKOYAMA Tatsuya;YAMADA Hiroshi;ISAYAMA Akihiko;HIWATARI Ryoji;IDE Shunsuke;MATSUNAGA Go;MIYOSHI Yuya;OYAMA Naoyuki;IMAGAWA Naoto;IGARASHI Yasuhiko;OKADA Masato;OGAWA Yuichi
  • 通讯作者:
    OGAWA Yuichi

OKADA Masato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKADA Masato', 18)}}的其他基金

Bayesian theory for spectral deconvolution and its expansion
谱反卷积的贝叶斯理论及其扩展
  • 批准号:
    24654118
  • 财政年份:
    2012
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Probabilistic model for non-photorealistic image based on view point and its application to computer graphics
基于视点的非真实感图像概率模型及其在计算机图形学中的应用
  • 批准号:
    22650041
  • 财政年份:
    2010
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Regulation of tumor growth via intracellular membrane compartments
通过细胞内膜区室调节肿瘤生长
  • 批准号:
    22240088
  • 财政年份:
    2010
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Visualization of a picture for information science and computer science
信息科学和计算机科学图片的可视化
  • 批准号:
    20240020
  • 财政年份:
    2008
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Roles of tyrosine kinases during evolution of multicellular animals
酪氨酸激酶在多细胞动物进化过程中的作用
  • 批准号:
    19370053
  • 财政年份:
    2007
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Estimations of neural networks by fluctuations of neuron spikes
通过神经元尖峰的波动来估计神经网络
  • 批准号:
    18079003
  • 财政年份:
    2006
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
The Molecular basis of tyrosine kinase signaling
酪氨酸激酶信号传导的分子基础
  • 批准号:
    17012015
  • 财政年份:
    2005
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Role of tyrosine kinase in the evolution of multicellular animals
酪氨酸激酶在多细胞动物进化中的作用
  • 批准号:
    17370048
  • 财政年份:
    2005
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Discrete and continuous compressed information representation using phase transition phenomena
使用相变现象的离散和连续压缩信息表示
  • 批准号:
    16500093
  • 财政年份:
    2004
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Role of tyrosine kinase in the evolution of multicellular animals
酪氨酸激酶在多细胞动物进化中的作用
  • 批准号:
    15370056
  • 财政年份:
    2003
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

CAREER: Seeing Through Atmospheric Turbulence: Image Restoration and Understanding using Deep Convolutional Neural Networks
职业:透视大气湍流:使用深度卷积神经网络进行图像恢复和理解
  • 批准号:
    2045489
  • 财政年份:
    2021
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Continuing Grant
A Comprehensive Study of Buddhist Practice through the Use of Digital Image Restoration Technology
利用数字图像修复技术全面研究佛教修行
  • 批准号:
    21H00473
  • 财政年份:
    2021
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Research on rapid and accurate image restoration by fusion of signal processing and deep learning
信号处理与深度学习融合快速准确图像复原研究
  • 批准号:
    20K04472
  • 财政年份:
    2020
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
AI platform for microscopy image restoration and virtual staining
用于显微镜图像修复和虚拟染色的人工智能平台
  • 批准号:
    9909318
  • 财政年份:
    2020
  • 资助金额:
    $ 2.37万
  • 项目类别:
AI platform for microscopy image restoration and virtual staining
用于显微镜图像修复和虚拟染色的人工智能平台
  • 批准号:
    10328064
  • 财政年份:
    2020
  • 资助金额:
    $ 2.37万
  • 项目类别:
Development of high-efficiency calculation method for solving inverse problem and singular value decomposition for each local area in image restoration processing
图像恢复处理中求解逆问题和各局部区域奇异值分解的高效计算方法的开发
  • 批准号:
    18K11351
  • 财政年份:
    2018
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Application of blind image restoration for medical cameras and development of a real-time restoration system
医用相机图像盲修复的应用及实时修复系统的开发
  • 批准号:
    18K11372
  • 财政年份:
    2018
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Adaptive image restoration method based on generalized principal component analysis and its application
基于广义主成分分析的自适应图像恢复方法及其应用
  • 批准号:
    16K16091
  • 财政年份:
    2016
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
A study on reflectance estimation for hyperspectral imaging and its application to image restoration
高光谱成像反射率估计及其在图像恢复中的应用研究
  • 批准号:
    16H07021
  • 财政年份:
    2016
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Comprehensive Examination of Buddhist Meditation by Means of Digital Image Restoration Technology
数字图像修复技术全面审视佛教禅修
  • 批准号:
    16H05667
  • 财政年份:
    2016
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了