Arithmetic of Calabi-Yau threefolds with mirror symmetry

镜像对称的 Calabi-Yau 三重算术

基本信息

  • 批准号:
    15540001
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

The purpose of this research was to study the arithmetic properties of Calabi-Yau threefolds with mirror symmetry and investigate the relationships between number theory and physics. The main object of this research was Calabi-Yau threefolds over finite fields and number fields. In particular, detailed studies were conducted for Calabi-Yau threefolds in weighted projective spaces and for those having K3 fibrations. Throughout the project, I had collaboration work with Professor Noriko Yui at Queen's University in Ontario, Canada.In every aspect of this project, except for the part concerning the special values of L-series, I was able to obtain results as expected. The results were presented in four seminar/workshop talks and I wrote one accepted paper and three preprints. The following describe details of my results :1.I considered Calabi-Yau threefolds constructed from weighted Delsarte threefolds and those having K3 fibrations, and computed their cohomology groups and the exact form … More of their zeta-functions and L-series.2.The height of the formal groups of Calabi-Yau threefolds was calculated and I refined the known formula for the height of the formal groups. Also, I found many Calabi-Yau threefolds with large height which had not been discovered earlier.3.I considered the effects of mirror symmetry on the zeta-functions and formal groups of Calabi-Yau threefolds. It was found that the mirror symmetry does not have any influence on the formal groups, while it has strong effects on the zeta-functions. This result was used for the calculations of the height of formal groups and for the characterization of zeta-functions. This gives, in fact, an important relationship between number theory and physics.4.I computed the zeta-functions and L-series of some 4-dimensional varieties and compared them with those of threefolds. Consequently, the difference and similarities between these varieties became clear.Finally, I note that my collaboration with Professor Yui was carried out by email and in five intensive meetings in person. Less
本研究的目的是研究具有镜像对称的Calabi-Yau三倍的算术性质,并探讨数论与物理之间的关系。本研究的主要对象是有限域和数域上的三倍Calabi-Yau。特别是,在加权投影空间中对Calabi-Yau进行了三倍的详细研究,并对那些有K3颤动的人进行了详细研究。在整个项目中,我与加拿大安大略省皇后大学的Noriko Yui教授进行了合作。在这个项目的各个方面,除了关于l系列的特殊值的部分,我都能得到预期的结果。结果在四次研讨会/研讨会上发表,我写了一篇被接受的论文和三篇预印本。以下详细描述了我的结果:我考虑了由加权Delsarte三倍和那些具有K3纤维构成的Calabi-Yau三倍,并计算了它们的上同调群和确切形式…更多的ζ函数和l -级数。计算了Calabi-Yau三倍体的形式群的高度,并对已知的形式群高度公式进行了改进。此外,我还发现了许多以前没有发现的高大的卡拉比-丘三叠。我考虑了镜面对称对ζ函数和三倍Calabi-Yau的形式群的影响。研究发现,镜像对称对形式群没有影响,但对ζ函数有很强的影响。这一结果用于形式群高度的计算和ζ函数的表征。事实上,这说明了数论和物理学之间的重要关系。我计算了一些四维变量的函数和l级数,并将它们与三维变量的函数和l级数进行了比较。因此,这些品种之间的区别和相似之处变得清晰起来。最后,我注意到我与Yui教授的合作是通过电子邮件和五次面对面的密集会议进行的。少

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The L-series of cubic hypersurface fourfolds
四重立方超曲面的 L 级数
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GOTO Yasuhiro其他文献

GOTO Yasuhiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GOTO Yasuhiro', 18)}}的其他基金

Study on the formal groups of low-dimensional Calabi-Yau varieties
低维Calabi-Yau变体形式群的研究
  • 批准号:
    18K03200
  • 财政年份:
    2018
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Sensibility Information Process of Comfortable Environment for Music Listening. Computational Model of implicit memory and interaction between visual and auditory senses
舒适听音乐环境的感性信息过程。
  • 批准号:
    24500259
  • 财政年份:
    2012
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Arithmetic study of Calabi-Yau varieties with fibration
Calabi-Yau 品种纤维化的算术研究
  • 批准号:
    21540003
  • 财政年份:
    2009
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Study of process of music cognition and influence of listening space in terms of implicit memory and attention
音乐认知过程及聆听空间对内隐记忆和注意力影响的研究
  • 批准号:
    18730468
  • 财政年份:
    2006
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study of the arithmetic and geometry related to the L-functions of algebraic varieties
代数簇L-函数相关的算术和几何研究
  • 批准号:
    18540005
  • 财政年份:
    2006
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Conference: Random matrices from quantum chaos to the Riemann zeta function.
会议:从量子混沌到黎曼 zeta 函数的随机矩阵。
  • 批准号:
    2306332
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Standard Grant
The Riemann zeta function
黎曼 zeta 函数
  • 批准号:
    2879204
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Studentship
Applications of functional analysis to the theory of the zeta function.
泛函分析在 zeta 函数理论中的应用。
  • 批准号:
    23K03050
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Moments of character sums and of the Riemann zeta function via multiplicative chaos
乘性混沌的特征和矩和黎曼 zeta 函数矩
  • 批准号:
    EP/V055755/1
  • 财政年份:
    2022
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Research Grant
Zeros and discrete value distribution of the Riemann zeta function and its derivatives
黎曼 zeta 函数及其导数的零点和离散值分布
  • 批准号:
    18K13400
  • 财政年份:
    2018
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Generating functions of the zeta-function derived from cusp forms
从尖点形式导出 zeta 函数的生成函数
  • 批准号:
    16K05078
  • 财政年份:
    2016
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Extreme value statistics of characteristic polynomials of random matrices and the Riemann zeta-function
随机矩阵特征多项式和黎曼zeta函数的极值统计
  • 批准号:
    1792464
  • 财政年份:
    2016
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Studentship
Research related to value distribution of zeta function and infinitely divisible distribution
zeta函数值分布及无限可分分布相关研究
  • 批准号:
    16K05077
  • 财政年份:
    2016
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A transfer operator approach to Maass cusp forms and the Selberg zeta function
Maass 尖点形式和 Selberg zeta 函数的传递算子方法
  • 批准号:
    EP/K000799/1
  • 财政年份:
    2013
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Research Grant
On analytic behaviour of zeta-function and its applications to the arithmetical error term
Zeta 函数的解析行为及其在算术误差项中的应用
  • 批准号:
    24540015
  • 财政年份:
    2012
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了