Geometry of plane algebraic curves

平面代数曲线的几何

基本信息

  • 批准号:
    15540007
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2006
  • 项目状态:
    已结题

项目摘要

Let C be an irreducible plane curve of degree d over the complex number field. To a non-constant rational function Φ on C, we can associate a morphism Φfrom the non-singular model of C to P^1. The gonality of C, denoted by G (or Gon(C)), is defined to be the minimum of the degrees of such morphisms. Let ν denote the maximal multiplicity of the singular points of C. In this situation, we say that C is of type (d,ν). We then easily see that G≦d-ν. The head investigator and his student M. Ohkouchi proved two kinds of criteria for the equality : G=d-ν (Tokyo J.Math.J.2004). However, for many plane curves, the equality is not the case. The head investigator also proved two lower bounds for G for the case in which G<d-ν and discussed various kinds of examples (Preprint, under submission). More recently, he obtained a relation between the genus g of C and the gonality G. More precisely, if g≦B (d,ν), then the equality G=d-ν holds.The head investigator and his student M. Saleem classified rational plane curves C of type (d, d-2) (Saitama Math.J.27,2005). In particular, they provide an inductive algorithm to construct such curves and proved that any such curve C is transformable into a line by a Cremona transformation. Previously, rational plane curves of type (d, d-2) with only cusps were classified. To describe multi-branched plane curve singularities, the notion of the system of multiplicity sequences were introduced. These results are generalized to type (d, d-2) plane curves with arbitrary genus, which are elliptic and hyperelliptic curves (Preprint).
设C是复数域上的d次不可约平面曲线。对于C上的一个非常数有理函数Φ,我们可以把一个从C的非奇异模型到P^1的态射Φ联系起来。用G(或Gon(C))表示的C的次性被定义为这种态射的最小次数。设ν表示C的奇点的最大重数,在这种情况下,我们说C是(d,ν)型的。然后我们很容易看到G≦d-ν。首席调查员和他的学生M.Ohkouhi证明了两种相等的标准:G=d-ν(东京数学杂志,2004年)。然而,对于许多平面曲线来说,等价性并非如此。首席调查员还证明了G&lt;d-ν案件的G的两个下界,并讨论了各种例子(预印本、提交中)。最近,他得到了C的亏格g与性度G之间的关系。更准确地说,如果g≦B(d,ν),则等式G=d-ν成立。首席研究员和他的学生M.Saleem将有理平面曲线C分类为(d,d-2)型(Saitama Math.J.27,2005)。特别地,他们提供了构造这种曲线的归纳算法,并证明了任何这样的曲线C都可以通过Cremona变换变换成一条直线。以前,只有尖点的(d,d-2)型有理平面曲线被分类。为了描述多分支平面曲线奇点,引入了多重序列系的概念。将这些结果推广到任意亏格的(d,d-2)型平面曲线,即椭圆曲线和超椭圆曲线(预印本)。

项目成果

期刊论文数量(45)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The explicit factorization of the Cremona transformation which is an extension of the Nagata automorphism into elementary links
克雷莫纳变换的显式分解,它是永田自同构到基本链接的扩展
Ohkouchi, M., Sakai, F.: "The gonality of singular plane curves"Proceedings of the Korea-Japan Jopint Workshop. 107-116 (2003)
Ohkouchi, M., Sakai, F.:“奇异平面曲线的棱性”韩日 Jopint 研讨会论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
An inverse mapping theorem for arc-analytic homeomorphism
弧解析同胚的逆映射定理
Mapping degree and Euler characteristic
映射度与欧拉特征
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Fukui;A.Khovanskii
  • 通讯作者:
    A.Khovanskii
Lower bounds for the gonality of singular plaen curves
奇异平面曲线的正交性下界
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAKAI Fumio其他文献

SAKAI Fumio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAKAI Fumio', 18)}}的其他基金

On the gonality of plane algebraic curves
平面代数曲线的正交性
  • 批准号:
    15K04806
  • 财政年份:
    2015
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The geometry of higher Weierstrass points and moduli spaces of plane algebraic curves
高维斯特拉斯点的几何和平面代数曲线的模空间
  • 批准号:
    23540041
  • 财政年份:
    2011
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
On rational functions and singularities of plane algebraic curves
关于平面代数曲线的有理函数和奇点
  • 批准号:
    20540038
  • 财政年份:
    2008
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic Geometry of Plane Curves
平面曲线的代数几何
  • 批准号:
    09440005
  • 财政年份:
    1997
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
On Birational Geometry of Algebraic Varieties
论代数簇的双有理几何
  • 批准号:
    07454003
  • 财政年份:
    1995
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
  • 批准号:
    23K03151
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Analysis of uncertainty, long-time statistics and singularity formation in fluid flow models
职业:流体流动模型中的不确定性、长期统计数据和奇点形成分析
  • 批准号:
    2239325
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Continuing Grant
Small Scale and Singularity Formation in Fluids
流体中的小尺度和奇点形成
  • 批准号:
    2306726
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Standard Grant
Well-Posedness and Singularity Formation in Applied Free Boundary Problems
应用自由边界问题中的适定性和奇异性形成
  • 批准号:
    2307638
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Standard Grant
Mathematical innovations woven by singularity theory and geometric topology
奇点理论和几何拓扑编织的数学创新
  • 批准号:
    23H05437
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
New development of Newton's method in singularity theory
奇点理论中牛顿法的新发展
  • 批准号:
    23K03106
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Singularity formation in Kahler geometry
卡勒几何中奇点的形成
  • 批准号:
    2304692
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Standard Grant
Construction of an automatic search tool with verification for mathematical models with singularity
具有奇异性的数学模型验证自动搜索工具的构建
  • 批准号:
    23K19016
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Koszul duality and the singularity category for the enhanced group cohomology ring
增强群上同调环的 Koszul 对偶性和奇点范畴
  • 批准号:
    EP/W036320/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Research Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
  • 批准号:
    23K03167
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了