Properties of mapping class groups related to Galois representations

与伽罗瓦表示相关的映射类组的属性

基本信息

  • 批准号:
    15540025
  • 负责人:
  • 金额:
    $ 1.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

Let κ_0 be a finite algebraic number field, κ_∞ be the field obtained by adjoining to κ_0 all roots of unity, and L be the maximal unramified abelian extension of κ_∞. Let κ_1 be the field obtained by adjoining ζ_4 and ζ_p for all odd prime p to κ_0 and consider the subgroup g=Gal(κ_∞/κ_1) of Gal(κ_∞/κ_0). In this research, we have investigated the structure of Gal(L/κ_∞) and the ideal class group C_∞ of κ_∞ with this g-action.As for Gal(L/κ_∞), we have shown that it is, as modules over the completed group algebra Z^^^[[g]], isomorphic to the direct pruduct of countable number of copies of Z^^^[[g]]. (Z^^^: the profinite completion of the ring of rational integers Z.)On the other hand, the ideal class group C_∞ is a discrete g-module. Assume that κ_0 is totally real and p is an odd prime. Let C_∞ (p)^- denote the minus part of C_∞)(p) under the action of the complex conjugation. (A result of Kurihara indicates that the plus part is {0}.) In general, for a pro-p g-module X and the group W(p) of all p-powerth roots of unity, let Hom(X,W(p)) denote the set of continuous homomorphisms from X to W(p). Then this is naturally a discrete g-module. As for C_∞(p)^-, we have shown that it is isomorphic to Hom(Π^∞_<N=1> Z_p[[g]], W(p)). (Z_p[[g]] : the completed group algebra g over the ring of p-adic integers Z_p.
设κ_0是有限代数数域,κ_∞是与κ_0邻接所有单位根得到的域,L是κ_∞的最大未分支阿贝尔扩张。设κ_1是通过将ζ_4和ζ_p对所有奇素数p邻接到κ_0而得到的域,考虑Gal1(κ_∞/κ_0)的子群g=Gal(κ_∞/κ_1)。本文研究了半群(L/κ_∞)的结构和具有这种g-作用的理想类群C_∞.对于半群(L/κ_∞),我们证明了它作为完备群代数Z^[[g]]上的模,同构于Z^^[[g]]的可数拷贝数的直积.另一方面,理想类群C_∞是离散g-模。设κ_0为全实数,p为奇素数。设C_∞(P)^-表示C_∞)(P)在复共轭作用下的负部分。(栗原的结果表明加号部分是{0}。)一般地,对于一个PRO-pg-模X和所有p次方单位根的群W(P),设Hom(X,W(P))表示从X到W(P)的连续同态集。那么这自然是一个离散的g-模。对于C_∞(P)^-,我们证明了它与Hom(Π^∞_&lt;N=1&gt;Z_p[[g]],W(P))同构。(Z_p[[g]]:环Z_p上的完备群代数g。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the cyclotomic Galois action on the ideal class group of the maximal cyclotomic field (in Japanese).
关于最大分圆域的理想类群的分圆伽罗瓦作用(日语)。
Homotopy types of the components of the spaces of embeddings of compact polyhedra into 2-manifolds
紧多面体嵌入2-流形的空间分量的同伦类型
Homotopy types of the components of spaces of embeddings of compact polyhedra into 2-manifolds
紧多面体嵌入2-流形的空间分量的同伦类型
Eigenloci of 5 point configurations on the Riemann sphere and the Grothendieck-Teichmuller group
黎曼球和 Grothendieck-Teichmuller 群上 5 点配置的特征轨迹
Homotopy types of the components of spaces of embeddings of compact polyhedra into 2-manifolds.
紧多面体嵌入 2-流形的空间分量的同伦类型。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ASADA Mamoru其他文献

ASADA Mamoru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ASADA Mamoru', 18)}}的其他基金

Galois groups of unramified extensions over maximal cyclotomic fields
最大分圆域上无分支扩张的伽罗瓦群
  • 批准号:
    22540019
  • 财政年份:
    2010
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Galois groups of unramified extensions over maximal cyclotomic fields
最大分圆域上无分支扩张的伽罗瓦群
  • 批准号:
    18540029
  • 财政年份:
    2006
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Properties of mapping class groups related to Galois representations
与伽罗瓦表示相关的映射类组的属性
  • 批准号:
    13640020
  • 财政年份:
    2001
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Properties of mapping class groups rolated to Gdois representations
与 Gdois 表示相关的映射类组的属性
  • 批准号:
    11640026
  • 财政年份:
    1999
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Properties of mapping class groups related to Galois representations
与伽罗瓦表示相关的映射类组的属性
  • 批准号:
    09640033
  • 财政年份:
    1997
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Optimization of the experimental design by the determinant formula of the relative class numbers of cyclotomic field
利用分圆域相对类数行列式优化实验设计
  • 批准号:
    16K12395
  • 财政年份:
    2016
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了