Properties of mapping class groups related to Galois representations
与伽罗瓦表示相关的映射类组的属性
基本信息
- 批准号:15540025
- 负责人:
- 金额:$ 1.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let κ_0 be a finite algebraic number field, κ_∞ be the field obtained by adjoining to κ_0 all roots of unity, and L be the maximal unramified abelian extension of κ_∞. Let κ_1 be the field obtained by adjoining ζ_4 and ζ_p for all odd prime p to κ_0 and consider the subgroup g=Gal(κ_∞/κ_1) of Gal(κ_∞/κ_0). In this research, we have investigated the structure of Gal(L/κ_∞) and the ideal class group C_∞ of κ_∞ with this g-action.As for Gal(L/κ_∞), we have shown that it is, as modules over the completed group algebra Z^^^[[g]], isomorphic to the direct pruduct of countable number of copies of Z^^^[[g]]. (Z^^^: the profinite completion of the ring of rational integers Z.)On the other hand, the ideal class group C_∞ is a discrete g-module. Assume that κ_0 is totally real and p is an odd prime. Let C_∞ (p)^- denote the minus part of C_∞)(p) under the action of the complex conjugation. (A result of Kurihara indicates that the plus part is {0}.) In general, for a pro-p g-module X and the group W(p) of all p-powerth roots of unity, let Hom(X,W(p)) denote the set of continuous homomorphisms from X to W(p). Then this is naturally a discrete g-module. As for C_∞(p)^-, we have shown that it is isomorphic to Hom(Π^∞_<N=1> Z_p[[g]], W(p)). (Z_p[[g]] : the completed group algebra g over the ring of p-adic integers Z_p.
设κ_0是有限代数数域,κ_∞是与κ_0邻接所有单位根得到的域,L是κ_∞的最大未分支阿贝尔扩张。设κ_1是通过将ζ_4和ζ_p对所有奇素数p邻接到κ_0而得到的域,考虑Gal1(κ_∞/κ_0)的子群g=Gal(κ_∞/κ_1)。本文研究了半群(L/κ_∞)的结构和具有这种g-作用的理想类群C_∞.对于半群(L/κ_∞),我们证明了它作为完备群代数Z^[[g]]上的模,同构于Z^^[[g]]的可数拷贝数的直积.另一方面,理想类群C_∞是离散g-模。设κ_0为全实数,p为奇素数。设C_∞(P)^-表示C_∞)(P)在复共轭作用下的负部分。(栗原的结果表明加号部分是{0}。)一般地,对于一个PRO-pg-模X和所有p次方单位根的群W(P),设Hom(X,W(P))表示从X到W(P)的连续同态集。那么这自然是一个离散的g-模。对于C_∞(P)^-,我们证明了它与Hom(Π^∞_<;N=1>;Z_p[[g]],W(P))同构。(Z_p[[g]]:环Z_p上的完备群代数g。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the cyclotomic Galois action on the ideal class group of the maximal cyclotomic field (in Japanese).
关于最大分圆域的理想类群的分圆伽罗瓦作用(日语)。
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:朝田 衞;M.Asada
- 通讯作者:M.Asada
Homotopy types of the components of the spaces of embeddings of compact polyhedra into 2-manifolds
紧多面体嵌入2-流形的空间分量的同伦类型
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:P.Lochak;H.Nakamura;L.Schneps;T.Yagasaki
- 通讯作者:T.Yagasaki
Homotopy types of the components of spaces of embeddings of compact polyhedra into 2-manifolds
紧多面体嵌入2-流形的空间分量的同伦类型
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:F.Maitani;H.Yamaguchi;T.Yagasaki
- 通讯作者:T.Yagasaki
Eigenloci of 5 point configurations on the Riemann sphere and the Grothendieck-Teichmuller group
黎曼球和 Grothendieck-Teichmuller 群上 5 点配置的特征轨迹
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:P.Lochak;H.Nakamura;L.Schneps
- 通讯作者:L.Schneps
Homotopy types of the components of spaces of embeddings of compact polyhedra into 2-manifolds.
紧多面体嵌入 2-流形的空间分量的同伦类型。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:P.Lochak;H.Nakamura;L.Schneps;T.Yagasaki
- 通讯作者:T.Yagasaki
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ASADA Mamoru其他文献
ASADA Mamoru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ASADA Mamoru', 18)}}的其他基金
Galois groups of unramified extensions over maximal cyclotomic fields
最大分圆域上无分支扩张的伽罗瓦群
- 批准号:
22540019 - 财政年份:2010
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Galois groups of unramified extensions over maximal cyclotomic fields
最大分圆域上无分支扩张的伽罗瓦群
- 批准号:
18540029 - 财政年份:2006
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Properties of mapping class groups related to Galois representations
与伽罗瓦表示相关的映射类组的属性
- 批准号:
13640020 - 财政年份:2001
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Properties of mapping class groups rolated to Gdois representations
与 Gdois 表示相关的映射类组的属性
- 批准号:
11640026 - 财政年份:1999
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Properties of mapping class groups related to Galois representations
与伽罗瓦表示相关的映射类组的属性
- 批准号:
09640033 - 财政年份:1997
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Optimization of the experimental design by the determinant formula of the relative class numbers of cyclotomic field
利用分圆域相对类数行列式优化实验设计
- 批准号:
16K12395 - 财政年份:2016
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research














{{item.name}}会员




