Properties of mapping class groups related to Galois representations

与伽罗瓦表示相关的映射类组的属性

基本信息

  • 批准号:
    13640020
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2002
  • 项目状态:
    已结题

项目摘要

Let us consider the moduli space M_<g, n>/Q (Q : the rationals) of n-pointed complete curves of genus g and the universal family of curves over M_<g, n>. The algebraic fundamental group π^<alg>_1 (M_<g, n>) of M_<g, n> acts naturally on the pro-l fundamental group (l : prime) of the general fiber so that we have a monodromy representation. Let Γ^n_g denote the mapping class group of a n-pointed Riemann surface of genus g. The algebraic fundamental group of M_<g, n> 【cross product】 Q^^- is isomorphic to Γ^^^^n_g (^ : profinite completion). In this research, for the purpose of investigating the monodromy representation in the case that (g, n) = (1, 1), we have tried to determine the weighted completion of π^<alg>_1 (M_<1, 1>). We have applied the general theory of the weighted completion (Hain-Matsumoto) to a former result of Ihara, the structure theorem of the projective limit of l-adic Tate modules of Jacobian varieties of modular curves. This leads us to the determination of weighted … More completion of the subgroup π^<alg>_1 (M<1, 1>【cross product】 Q^^-) of π^<alg>_1 (M<1, 1>).Let X be a non-singular algebraic curve over a field k which is obtained from a complete curve of genus g by removing n k-rational points. In the case 2 - 2g- n < 0, the algebraic fundamental group π^<alg>_1 (【cross product】 k^^-) of 【cross product】 k^^- has the following property ; every subgroup with finite index is centerfree. Whether the group Γ^^^^n_g also has this property or not is an open problem. In order for it to have this poperty, it is necessary that its dense subgroup Γ^n_g also has the same property, and this is known. We have given, under the assumption that n 【greater than or similar】 1, an alternative proof of this fact.On the other hand, let k be a finite algebraic number field and k_∞ denote the field obtained by adjoining all roots of unity to k. Let M be the maximum unramified Galois extension of k_∞. The Galois group Gal (M/k_∞) is regarded as an analogue, in algebraic number fields, to the group π^<alg>_1 (X 【cross product】 k^^-). In this research, we have shown that Gal (M/k_∞) and Gal (M/k) both have the above property. Less
我们考虑g属的n点完全曲线的模空间M_<g, n>/Q (Q:有理数)和M_<g, n>上的曲线全称族。M_<g, n>的代数基群π^<alg>_1 (M_<g, n>)自然作用于一般纤维的前1基群(l: prime),从而得到一个单态表示。设Γ^n_g表示g属的n点黎曼曲面的映射类群。M_<g, n>【外积】Q^^-的代数基本群同构于Γ^^^^n_g(^:无限补全)。在本研究中,为了研究(g, n) =(1,1)情况下的单态表示,我们试图确定π^<alg>_1 (M_< 1,1 >)的加权补全。我们将加权补全的一般理论(Hain-Matsumoto)应用于Ihara先前的一个结果,即模曲线Jacobian变体的l-adic Tate模的投影极限的结构定理。进一步完成π^<alg bbb_1 (M< 1,1 >)的子群π^<alg bbb_1 (M< 1,1 >)的【外积】Q^^-。设X为域k上的非奇异代数曲线,该曲线由g属的完全曲线去掉n个k个有理点得到。在2 - 2g- n < 0的情况下,(外积)k^^-的代数基本群π^<alg>_1(外积)k^^-有如下性质;具有有限索引的子群是无中心的。组Γ^^^^n_g是否也具有此属性是一个开放的问题。为了使它具有这种性质,它的密集子群Γ^n_g也必须具有同样的性质,这是已知的。在n大于或类似于1的假设下,我们给出了这个事实的另一种证明。另一方面,设k为有限代数数域,k_∞表示将k的所有单位根相邻得到的域。设M为k_∞的最大无分支伽罗瓦扩展。在代数数域中,伽罗瓦群Gal (M/k_∞)与群π^<alg>_1 (X【外积】k^^-)是类似的。在本研究中,我们证明了Gal (M/k_∞)和Gal (M/k)都具有上述性质。少

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Ishida, F.Maitani: "Conformal inbeddings of Denjoy domains II"Acta Humanistica et Scientifica Universitatis Sangio Kyotiensis. 31. 1-5 (2002)
H.Ishida、F.Maitani:“Denjoy 域 II 的保形嵌入”Acta Humanistica et Scientifica Universitatis Sangio Kyotiensis。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Yagasaki: "Embedding spaces and hyperspaces of polyhedra in 2-manifolds"Topology and its applications. 121. 247-254 (2002)
T.Yagasaki:“2-流形中多面体的嵌入空间和超空间”拓扑及其应用。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H. Ishida, F. Maitani: "Conformal imbeddings of Denjoy domains"Acta Humanistica et Scientifica Universitatis Sangio Kyotiensis. 30. 1-7 (2001)
H. Ishida、F. Maitani:“Denjoy 域的保形嵌入”Acta Humanistica et Scientifica Universitatis Sangio Kyotiensis。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Asada: "On centerfree quotients of surface groups"Communications in algebra. 29(7). 2871-2875 (2001)
M.Asada:“论表面群的无中心商”代数通讯。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Asada: "The faithfulness of the monodromy representations associated with certain families of algebraic curves"Journal of Pure and Applied Algebra. 159. 123-147 (2001)
M.Asada:“与某些代数曲线族相关的单一性表示的忠实性”纯粹与应用代数杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ASADA Mamoru其他文献

ASADA Mamoru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ASADA Mamoru', 18)}}的其他基金

Galois groups of unramified extensions over maximal cyclotomic fields
最大分圆域上无分支扩张的伽罗瓦群
  • 批准号:
    22540019
  • 财政年份:
    2010
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Galois groups of unramified extensions over maximal cyclotomic fields
最大分圆域上无分支扩张的伽罗瓦群
  • 批准号:
    18540029
  • 财政年份:
    2006
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Properties of mapping class groups related to Galois representations
与伽罗瓦表示相关的映射类组的属性
  • 批准号:
    15540025
  • 财政年份:
    2003
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Properties of mapping class groups rolated to Gdois representations
与 Gdois 表示相关的映射类组的属性
  • 批准号:
    11640026
  • 财政年份:
    1999
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Properties of mapping class groups related to Galois representations
与伽罗瓦表示相关的映射类组的属性
  • 批准号:
    09640033
  • 财政年份:
    1997
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

On the fundamental group and non-negativity of curvature for pseudo-Riemannian submersion
关于伪黎曼淹没的基本群和曲率非负性
  • 批准号:
    20K14315
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Research on fundamental group actions on derived categories of coherent sheaves and spaces of stability conditions
相干滑轮派生类和稳定条件空间的基本群作用研究
  • 批准号:
    19K14502
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Quantization of the fundamental group by dual quantum group
双量子群对基本群的量子化
  • 批准号:
    17K18728
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
The fundamental group and the classification of surfaces and 3-manifolds
曲面和三流形的基本群和分类
  • 批准号:
    496023-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 2.11万
  • 项目类别:
    University Undergraduate Student Research Awards
On the left-orientability of the fundamental group of homology spheres obtained as twofold covers of the 3-sphere branched over a knot.
关于同调球体基本群的左定向性,作为在结上分支的 3 球体的双重覆盖而获得。
  • 批准号:
    481788-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Cohomology of Deligne-Lusztig varieties and the fundamental group of the Drinfeld halfspace over a finite field.
Deligne-Lusztig 簇的上同调和有限域上的 Drinfeld 半空间的基本群。
  • 批准号:
    279354432
  • 财政年份:
    2015
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Grants
Topology, contact geometry, and fundamental group of 3-manifolds from open book decomposition
拓扑、接触几何和开卷分解的 3 流形基本群
  • 批准号:
    25887030
  • 财政年份:
    2013
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Motivic fundamental group and motivic Galois group
动机基本群和动机伽罗瓦群
  • 批准号:
    21740008
  • 财政年份:
    2009
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
3 Dimensional Geometry, Heegaard Splittings and Rank of the Fundamental Group
3 维几何、Heegaard 分裂和基本群的秩
  • 批准号:
    0939587
  • 财政年份:
    2008
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
3 Dimensional Geometry, Heegaard Splittings and Rank of the Fundamental Group
3 维几何、Heegaard 分裂和基本群的秩
  • 批准号:
    0706878
  • 财政年份:
    2007
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了