Properties of mapping class groups rolated to Gdois representations
与 Gdois 表示相关的映射类组的属性
基本信息
- 批准号:11640026
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let X be a non-singular algebraic curve over a field k of characteristic 0 which is obtained from a complete curve of genus g (【greater than or equal】 0) by removing n (【greater than or equal】 0) k-rational points (2-2g-n<0), and l be a prime number. The absolute Galois group of k acts naturally on the algebraic fundamental group π^<alg>_1 of X【cross product】k^^- (or pro-l fundamental group (the maximal pro-l quotient of π^<alg>_1)) so that we obtain a Galois representation.Let us consider the moduli space M_<g, n>/Q (Q : the rationals) of n-pointed complete curves of genus g and the universal family of curves over M_<g, n>. Then the algebraic fundamental group of M_<g, n> acts naturally on that of the general fiber so that we have a monodromy representation. (A foundation has been given by T.Oda.) This is the Galois representation in the case that the curve X is the universal curve, k being the function field of M_<g, n>. Let π_1(g, n) and Γ^n_g denote the fundamental group and the ma … More pping class group of a Riemann surface of genus g (【greater than or equal】 0) with n (【greater than or equal】 0) punctures respectively. Then the algebraic fundamental group of M_<g, n> 【cross product】 Q^^- and that of the general fiber are isomorphic to Γ^^<^>^n_g and π^^<^>_1 (g, n) respectively (^ : profinite completion). The natural action ρ_<g, n> of Γ^^<^>^n_g on π^^<^>_1 (g, n) is nothing but the (geometric part of) the monodromy representation. The group Γ^^<^>^n_g acts also on the pro-l fundamental group π^<(l)>_1(g, n), which is the pro-l completion of π_1(g, n), and we obtain a Galois representation ρ^<(l)>_<g, n>. In this research, we have investigated the kernels of the representations ρ_<g, n> and ρ^<(l)>_<g, n>. So far, the kernel of ρ^<(l)>_<g, n> has been known only in the case of g=0. In the case that l=2, by applying the method to prove the faithfulness of ρ_<1, 1>, the kernel of ρ^<(2)>_<1, 1> has been determined.On the other hand, whether the center of any open subgroup of Γ^^<^>^n_g is trivial or not is an open problem. (This is related to whether M_<g, n > is "anabelian" or not). We have shown that, if the representation ρ_<g, n> is faithful, then the center of any open subgroup of Γ^^<^>^<n+1>_g is trivial. Less
设X是特征为0的域k上的非奇异代数曲线,它是从亏格为g(0)的完备曲线中去掉n(0)个k-有理点(2-2g-n<0)得到的,l是素数。k的绝对Galois群自然地作用在<alg>X[叉积]k^^-的代数基本群π^1(或pro-l基本群(π^1的最大pro-l商<alg>))上,从而得到一个Galois表示.考虑亏格为g的n点完全曲线的模空间M_<g,n>/Q(Q:有理数)和M_<g,n>上的泛曲线族.然后M_<g,n>的代数基本群自然地作用在一般纤维的代数基本群上,从而得到单值表示。(T. Oda提供了一个基础。)这是曲线X是万有曲线,k是M_<g,n>的函数域时的伽罗瓦表示。设π_1(g,n)和Γ^n_g表示基本群, ...更多信息 分别给出了亏格为g([大于或等于] 0)的Riemann曲面具有n([大于或等于] 0)个穿孔的一个pping类群。则M_<g,n> [叉积] Q^^-的代数基本群与一般纤维的代数基本群分别同构于Γ^n_g和π^_1(g,n)(^:profinite completion)。r ^^<^>^n_g对π^^<^>_1(g,n)的自然作用ρ_<g,n>只不过是单值表示的(几何部分)。群Γ^n_g也作用在pro-l基本群π^(l)>_1(g,n)上,它是π_1(g,n)的pro-l完备化,我们得到了一个Galois表示ρ^(l)>_<g,n>.在本研究中,我们研究了表示ρ_<g,n>和ρ^<(l)>_<g,n>的核。到目前为止,ρ^<(l)>_<g,n>的核仅在g=0的情况下才被知道。在l=2的情形下,应用证明ρ <1,1>的忠实性的方法,确定了ρ^<(2)><1,1>的核,而关于Γ^^<^>^n_g的任何开子群的中心是否平凡则是一个公开问题. (This与M_<g,n >是否为“Anabelian”有关)。我们证明了,如果表示ρ_g,n>是忠实的,则Γ^^<^>^<n+1>_g的任何开子群的中心是平凡的.少
项目成果
期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
F.Maitani: "Ahlfors-Rauch type vasiational formalas on complex manifolds"Mem.Fac.Eng and Design Kyoto Inst.Teth.. (to appear).
F.Maitani:“复杂流形上的 Ahlfors-Rauch 型血管形式”Mem.Fac.Eng 和 Design Kenya Inst.Teth..(即将出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Asada: "The faithfulness of the monodromy representations associated with certain families of algebraic curves"Journal of Pure and Applied Algebra. (to appear).
M.Asada:“与某些代数曲线族相关的单一性表示的忠实性”纯粹与应用代数杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Asada: "The faithfulness of the monodromy representations assocated with certain famil of algebraic croves"Jousnal of Puse and Applied Algebva. (to appear).
M.Asada:“与某些代数域相关的一族表示的忠实性”Puse 和应用代数杂志杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
M.Asada: "On centerfree quotients of surface groups"Communications in Algebra. (to appear).
M.Asada:“论表面群的无中心商”代数通讯。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Nokaoka: "Une methode nous la construction de fonction d'echelle d'ondelettes de rang M."Mem.Fac.Eng.and Design, Kyoto Inst. Teth.. 48. 1-9 (2000)
A.Nokaoka:“Une methode nous la Construction de fonction dechelle dondelettes de rang M.”Mem.Fac.Eng.and Design,京都研究所。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ASADA Mamoru其他文献
ASADA Mamoru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ASADA Mamoru', 18)}}的其他基金
Galois groups of unramified extensions over maximal cyclotomic fields
最大分圆域上无分支扩张的伽罗瓦群
- 批准号:
22540019 - 财政年份:2010
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Galois groups of unramified extensions over maximal cyclotomic fields
最大分圆域上无分支扩张的伽罗瓦群
- 批准号:
18540029 - 财政年份:2006
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Properties of mapping class groups related to Galois representations
与伽罗瓦表示相关的映射类组的属性
- 批准号:
15540025 - 财政年份:2003
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Properties of mapping class groups related to Galois representations
与伽罗瓦表示相关的映射类组的属性
- 批准号:
13640020 - 财政年份:2001
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Properties of mapping class groups related to Galois representations
与伽罗瓦表示相关的映射类组的属性
- 批准号:
09640033 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
On the fundamental group and non-negativity of curvature for pseudo-Riemannian submersion
关于伪黎曼淹没的基本群和曲率非负性
- 批准号:
20K14315 - 财政年份:2020
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research on fundamental group actions on derived categories of coherent sheaves and spaces of stability conditions
相干滑轮派生类和稳定条件空间的基本群作用研究
- 批准号:
19K14502 - 财政年份:2019
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Quantization of the fundamental group by dual quantum group
双量子群对基本群的量子化
- 批准号:
17K18728 - 财政年份:2017
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
The fundamental group and the classification of surfaces and 3-manifolds
曲面和三流形的基本群和分类
- 批准号:
496023-2016 - 财政年份:2016
- 资助金额:
$ 2.3万 - 项目类别:
University Undergraduate Student Research Awards
On the left-orientability of the fundamental group of homology spheres obtained as twofold covers of the 3-sphere branched over a knot.
关于同调球体基本群的左定向性,作为在结上分支的 3 球体的双重覆盖而获得。
- 批准号:
481788-2015 - 财政年份:2015
- 资助金额:
$ 2.3万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Cohomology of Deligne-Lusztig varieties and the fundamental group of the Drinfeld halfspace over a finite field.
Deligne-Lusztig 簇的上同调和有限域上的 Drinfeld 半空间的基本群。
- 批准号:
279354432 - 财政年份:2015
- 资助金额:
$ 2.3万 - 项目类别:
Research Grants
Topology, contact geometry, and fundamental group of 3-manifolds from open book decomposition
拓扑、接触几何和开卷分解的 3 流形基本群
- 批准号:
25887030 - 财政年份:2013
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Motivic fundamental group and motivic Galois group
动机基本群和动机伽罗瓦群
- 批准号:
21740008 - 财政年份:2009
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
3 Dimensional Geometry, Heegaard Splittings and Rank of the Fundamental Group
3 维几何、Heegaard 分裂和基本群的秩
- 批准号:
0939587 - 财政年份:2008
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant
3 Dimensional Geometry, Heegaard Splittings and Rank of the Fundamental Group
3 维几何、Heegaard 分裂和基本群的秩
- 批准号:
0706878 - 财政年份:2007
- 资助金额:
$ 2.3万 - 项目类别:
Continuing Grant














{{item.name}}会员




