Properties of mapping class groups related to Galois representations
与伽罗瓦表示相关的映射类组的属性
基本信息
- 批准号:09640033
- 负责人:
- 金额:$ 1.73万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Let X be a non-singular algebraic curve over a field k of characteristic 0 which is obtained from a complete curve of genus g(<greater than or equal> 0) by removing n(<greater than or equal> 0) k-rational points (2- 2g-n.<0), and 1 be a prime number. The absolute Galois group of k acts naturally on the algebraic fundamental group pi_1^<alg> of X <cross product> k (or pro-1 fundamental group (the maximal pro-l quotient of pi_1^<alg>)) so that we obtain a Galois representation.Let us consider the moduli space M_<g, n>/Q (Q the rationals ) of n-pointed complete curves of genus g and the universal family of curves over M_<g, n>. Then the algebraic fundamental group of M_<g, n> acts naturally on that of the general fiber so that we have a monodromy representation. (A foundation has been given by T.Oda.) This is the Galois representation in the case that the curve X is the universal curve, k being the function field of M_<g, n>. In this research, we have investigated the faithfulness of this monodromy representation and have shown that, in the case that g = 0, 1, it is faithful for all n.In investigating Galois representations, one of basic properties of the group pi_1^<alg> (*pi_1^<alg>(g, n) ) is that it is center free (M.P.Anderson). In this research we have shown, by a comparatively elementary way, a property which is stronger than this.The braid group of a finitely generated free nilpotent pro-I group can be regarded as approximating the genus 0 pro-l mapping class groups. In this research we have shown that this group has a structure an algebraic group which is independent of l.
设X是特征为0的域k上的一条非奇异代数曲线,它是亏格g(<;大于或等于>;0)的完全曲线去掉n(<;大于或等于>;0)k-有理点(2-2g-n.<;0)而得到的,1是素数。K的绝对伽罗瓦群自然作用于X<;叉积>;k的代数基础群pi_1^<;alg>;(或PRO-1基本群(pi_1^<;alg>;的最大PRO-L商),从而得到伽罗瓦表示。让我们考虑亏格G的n点完全曲线的模空间M_<;g,n>;/q(q为有理数)和M_<;g,n>;上的泛曲线族。然后,M<;g,n>;的代数基本群自然地作用于一般纤维的代数基本群,因此我们有一个单行表示。(T.Oda已经提供了一个基金会。)这是在曲线X是泛曲线的情况下的伽罗瓦表示,k是M<;g,n>;的函数域。在研究Galois表示时,群pi_1^<;alg>;(*pi_1^<;alg>;(g,n))的一个基本性质是它是无中心的(M.P.Anderson)。在这一研究中,我们用一个比较初等的方法证明了一个比这更强的性质:有限生成的自由幂零PRO-I群的辫子群可以看作近似于亏格0的PRO-L映射类群。在这一研究中,我们证明了这个群有一个独立于L的代数群结构。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Yagasaki: "The groups of quasiconformal homeomorphisms of Riemann surfaces" Proc.Amer.Math.Soc.(to appear).
T.Yagasaki:“黎曼曲面的拟共形同胚群”Proc.Amer.Math.Soc.(即将出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Nakaoka (with A.Masuda): "A method of wavelet construction from n-MRA" Mem.Fac.Eng.and Design, Kyoto Inst.Tech.(to appear).
A.Nakaoka(与 A.Masuda):“一种来自 n-MRA 的小波构造方法”Mem.Fac.Eng.and Design,Kyoto Inst.Tech(待发表)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Yagasaki: "The groups of quasiconformal homeomorphisms of Riemann surfaces" Proc.Amer.Math.Soc.to appear.
T.Yagasaki:“黎曼曲面的拟共形同胚群”Proc.Amer.Math.Soc. 出现。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
F.Maitani(with K.Nishikawa): "Moduli of ring domains obtained by a conformal welding" Kodai Math.J.20. 161-171 (1997)
F.Maitani(与 K.Nishikawa):“通过保形焊接获得的环域模量”Kodai Math.J.20。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Nakaoka(with A.Masuda): "A method of wavelet construction from n-MRA" Mem.Eac.Eng.and Design, Kyoto Inst.Tech.(to appear).
A.Nakaoka(与 A.Masuda):“一种来自 n-MRA 的小波构造方法”Mem.Eac.Eng.and Design,Kyoto Inst.Tech(即将出现)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ASADA Mamoru其他文献
ASADA Mamoru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ASADA Mamoru', 18)}}的其他基金
Galois groups of unramified extensions over maximal cyclotomic fields
最大分圆域上无分支扩张的伽罗瓦群
- 批准号:
22540019 - 财政年份:2010
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Galois groups of unramified extensions over maximal cyclotomic fields
最大分圆域上无分支扩张的伽罗瓦群
- 批准号:
18540029 - 财政年份:2006
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Properties of mapping class groups related to Galois representations
与伽罗瓦表示相关的映射类组的属性
- 批准号:
15540025 - 财政年份:2003
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Properties of mapping class groups related to Galois representations
与伽罗瓦表示相关的映射类组的属性
- 批准号:
13640020 - 财政年份:2001
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Properties of mapping class groups rolated to Gdois representations
与 Gdois 表示相关的映射类组的属性
- 批准号:
11640026 - 财政年份:1999
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
On the fundamental group and non-negativity of curvature for pseudo-Riemannian submersion
关于伪黎曼淹没的基本群和曲率非负性
- 批准号:
20K14315 - 财政年份:2020
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research on fundamental group actions on derived categories of coherent sheaves and spaces of stability conditions
相干滑轮派生类和稳定条件空间的基本群作用研究
- 批准号:
19K14502 - 财政年份:2019
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Quantization of the fundamental group by dual quantum group
双量子群对基本群的量子化
- 批准号:
17K18728 - 财政年份:2017
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
The fundamental group and the classification of surfaces and 3-manifolds
曲面和三流形的基本群和分类
- 批准号:
496023-2016 - 财政年份:2016
- 资助金额:
$ 1.73万 - 项目类别:
University Undergraduate Student Research Awards
On the left-orientability of the fundamental group of homology spheres obtained as twofold covers of the 3-sphere branched over a knot.
关于同调球体基本群的左定向性,作为在结上分支的 3 球体的双重覆盖而获得。
- 批准号:
481788-2015 - 财政年份:2015
- 资助金额:
$ 1.73万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Cohomology of Deligne-Lusztig varieties and the fundamental group of the Drinfeld halfspace over a finite field.
Deligne-Lusztig 簇的上同调和有限域上的 Drinfeld 半空间的基本群。
- 批准号:
279354432 - 财政年份:2015
- 资助金额:
$ 1.73万 - 项目类别:
Research Grants
Topology, contact geometry, and fundamental group of 3-manifolds from open book decomposition
拓扑、接触几何和开卷分解的 3 流形基本群
- 批准号:
25887030 - 财政年份:2013
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Motivic fundamental group and motivic Galois group
动机基本群和动机伽罗瓦群
- 批准号:
21740008 - 财政年份:2009
- 资助金额:
$ 1.73万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
3 Dimensional Geometry, Heegaard Splittings and Rank of the Fundamental Group
3 维几何、Heegaard 分裂和基本群的秩
- 批准号:
0939587 - 财政年份:2008
- 资助金额:
$ 1.73万 - 项目类别:
Continuing Grant
3 Dimensional Geometry, Heegaard Splittings and Rank of the Fundamental Group
3 维几何、Heegaard 分裂和基本群的秩
- 批准号:
0706878 - 财政年份:2007
- 资助金额:
$ 1.73万 - 项目类别:
Continuing Grant














{{item.name}}会员




