ANALYSIS OF SYSTEMS OF DIFFERENTIAL EQUATIONS HAVING SEVERAL NONLOCAL TERMS AND APPLICATIONS

具有多项非局部项的微分方程组的分析及应用

基本信息

  • 批准号:
    15540172
  • 负责人:
  • 金额:
    $ 1.66万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

First, we have investigated size structured population models where the growth rate, the mortality rate and the fertility rate depend on size and total population weighted differently each other. We obtained the existence, the representation, and the uniqueness of solutions. By using Schauder's fixed point theorem, we obtained the existence of solutions in a general model. For the uniqueness, we imposed some stronger conditions on the mortality rate and the fertility rate. Unfortunately, it is not known whether the stronger conditions can be removed or not. The results are published in the journal, J.Math.Anal.Appl.Next, we have investigated a general time-dependent model of size structured population dynamics, where the growth rate depends on the size and time. We obtained the existence, positivity, and the uniqueness of solutions. The study of the time dependent model is needed to consider nonlinear harvesting problems.In fact, we applied the results to a nonlinear harvesting problem of size structured population models. Our model has the harvesting rate depending only on time, but the growth rate depends on the size and time and the fertility rate depends on the weighted total population.We gave a presentation about this result at the international conference held at Florida in 2004.Further, we have developed the theory of nonlinear transport equations with nonlocal terms prescribed by a multi-valued function and applied the results to nonlinear four state models of muscle contraction.Here, we obtained not only the existence and uniqueness results, but also the results of the support and the boundedness of the solution. The results will be published in the journal, Adv.Math.Sci.Anal.
首先,我们研究了人口规模结构模型,其中增长率、死亡率和生育率取决于人口规模和总人口权重。我们得到了解的存在、表示和唯一性。利用Schauder不动点定理,我们得到了一般模型解的存在性。为了独特性,我们对死亡率和生育率施加了一些更强的条件。不幸的是,目前还不知道是否可以消除更强的条件。这一结果发表在《J.Math.Anal.Appl.》杂志上。接下来,我们研究了一个一般的大小结构种群动力学的依赖于时间的模型,其中增长率取决于大小和时间。我们得到了解的存在性、正性和唯一性。时间依赖模型的研究是考虑非线性收获问题所必需的。事实上,我们将结果应用于一个大小结构种群模型的非线性收获问题。我们的模型具有只依赖于时间的收获率,但增长率依赖于大小和时间,生育率依赖于加权的总人口.我们在2004年在佛罗里达举行的国际会议上介绍了这一结果.进一步,我们发展了由多值函数描述的具有非局部项的非线性传输方程的理论,并将其应用于肌肉收缩的非线性四状态模型.在此,我们不仅得到了解的存在唯一性结果,而且得到了解的支撑性和有界性的结果.研究结果将发表在《高级数学科学分析》杂志上。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A system of nonlinear nonlocal transport equations related to muscle contraction mechanism
与肌肉收缩机制相关的非线性非局部传输方程组
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Ichinose;D.Fan;G.G.Gundersen;佐藤 秀一;G.G.Gundersen;Y.Kanjin;Y.Kanjin;T.Ichinose;N.Kato;N.Kato
  • 通讯作者:
    N.Kato
H.Aikawa: "Positive harmonic functions of finite order in a Denjoy type domain"Proc.Amer.Math.Soc.. 131. 3873-3881 (2003)
H.Aikawa:“Denjoy 型域中有限阶的正调和函数”Proc.Amer.Math.Soc.. 131. 3873-3881 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A general model of size-dependent population dynamics with nonlinear growth rate
T.Furumochi, S.Murakami, Y.Nagabuchi: "Stabilities in Volterra difference equations on a Banach space"Fields Institute Communications. (to appear).
T.Furumochi、S.Murakami、Y.Nagabuchi:“Banach 空间上 Volterra 差分方程的稳定性”Fields Institute Communications。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Machihara, K.Nakanishi, T.Ozawa: "Small global solutions and the nonrelativistic limit for the nonlinear Dirac equation"Revista Matematica Iberoamericana. 19. 179-194 (2003)
S.Machihara、K.Nakanishi、T.Ozawa:“非线性狄拉克方程的小全局解和非相对论极限”Revista Matematica Iberoamericana。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KATO Nobuyuki其他文献

KATO Nobuyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KATO Nobuyuki', 18)}}的其他基金

Development ofthe infection and proliferation systemof the 1bgenotype HCV based on the new idea
基于新理念的1b基因型HCV感染增殖系统的开发
  • 批准号:
    24659207
  • 财政年份:
    2012
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Theory of nonlocal nonlinear differential equations and optimization,and applications
非局部非线性微分方程理论与优化及应用
  • 批准号:
    18540178
  • 财政年份:
    2006
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
System of nonlocal nonlinear differential equations and applications
非局部非线性微分方程组及其应用
  • 批准号:
    13640174
  • 财政年份:
    2001
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theory and Applications of Evolution Equations with Nonlocal Conditions
非局部条件演化方程的理论与应用
  • 批准号:
    10640172
  • 财政年份:
    1998
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Variation of Hepatitis C Viral Genome.
丙型肝炎病毒基因组变异分析。
  • 批准号:
    02680145
  • 财政年份:
    1990
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337427
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337426
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Standard Grant
RAPID: Effects of the 2023-24 El Nino on Fish Disease and Population Dynamics in the Galapagos Islands
RAPID:2023-24 年厄尔尼诺现象对加拉帕戈斯群岛鱼类疾病和种群动态的影响
  • 批准号:
    2348548
  • 财政年份:
    2024
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Standard Grant
Collaborative Research: ORCC:RUI: Integrating evolutionary and migratory potential of Chamaecrista fasciculata into forecasts of range-wide population dynamics under climate change
合作研究:ORCC:RUI:将 Chamaecrista fasciculata 的进化和迁徙潜力纳入气候变化下范围内种群动态的预测中
  • 批准号:
    2220927
  • 财政年份:
    2023
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Standard Grant
eMB: Mathematical Classification of Complexity in Population Dynamics
eMB:人口动态复杂性的数学分类
  • 批准号:
    2325146
  • 财政年份:
    2023
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Standard Grant
Delineation of auditory-motor population dynamics underlying sensorimotor integration in the birdsong system
鸟鸣系统中感觉运动整合的听觉运动群体动态的描绘
  • 批准号:
    10824950
  • 财政年份:
    2023
  • 资助金额:
    $ 1.66万
  • 项目类别:
Roadmap to achieving carbon neutrality by 2050 considering household demographics and population dynamics
考虑到家庭人口统计和人口动态,到 2050 年实现碳中和的路线图
  • 批准号:
    23K11542
  • 财政年份:
    2023
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Assessing the environmental and ecological drives of interannual variability in the life histories and population dynamics of icefishes (Family Channi
评估冰鱼生命史和种群动态的年际变化的环境和生态驱动力(Family Channi
  • 批准号:
    2879084
  • 财政年份:
    2023
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Studentship
Collaborative Research: ORCC:RUI: Integrating evolutionary and migratory potential of Chamaecrista fasciculata into forecasts of range-wide population dynamics under climate change
合作研究:ORCC:RUI:将 Chamaecrista fasciculata 的进化和迁徙潜力纳入气候变化下范围内种群动态的预测中
  • 批准号:
    2220930
  • 财政年份:
    2023
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Standard Grant
Elucidating effects of inbreeding avoidance on population dynamics using long-term study of a wild population
通过对野生种群的长期研究阐明避免近交对种群动态的影响
  • 批准号:
    22KJ3107
  • 财政年份:
    2023
  • 资助金额:
    $ 1.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了