System of nonlocal nonlinear differential equations and applications
非局部非线性微分方程组及其应用
基本信息
- 批准号:13640174
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2001
- 资助国家:日本
- 起止时间:2001 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
First, we have investigated the population models with growth rate depending on size and time. Continuous dependence of solution on all given data is obtained. For the dependency on initial values, aging functions and birth functions, it is shown relatively simply, but the dependency on growth rate includes an essentially difficult problem. The way of solving equation is so-called the characteristic method and the characteristic curves are determined by the growth rate, and so when the growth rate is perturbed, the characteristic curves themselves change. The results here are important as the stability of equation, and at the same time, they can be used to investigate the models with nonlinear growth rate.Next, we have investigated the size-dependent population models with growth rate depending on size and the total population. Originally, the models come from describing the population dynamics of plants in forests or plantations. We obtained the existence and uniqueness results for more general models and we gave a presentation about this result at the international conference held at Hong Kong in 2002.Muscle contraction is a consequence of relative sliding between tha thick filament called myosin and the thin filament called actin. This sliding occurs when the so-called cross-bridges attach myosin to actin and act as spring. The muscle contraction models describe the temporal variation of the density of the attached cross-bridges. In this research, we have considered a system of hyperbolic transport equations. Our model contains the so-called four state models in which there are two state of attached and detached cross-bridges respectively.
首先,我们研究了增长率随规模和时间变化的人口模型。得到了解对所有给定数据的连续依赖。对于初始值、老化函数和出生函数的依赖关系,表现得相对简单,但对增长率的依赖关系包含了一个本质上困难的问题。求解方程的方法称为特征法,特征曲线是由生长速率决定的,当生长速率受到扰动时,特征曲线本身也会发生变化。所得结果对方程的稳定性具有重要意义,同时也可用于研究具有非线性增长率的模型。其次,我们研究了人口规模依赖模型,增长率取决于人口规模和总人口。最初,这些模型来自于描述森林或种植园中植物的种群动态。我们得到了更一般模型的存在唯一性结果,并于2002年在香港举行的国际会议上发表了这一结果。肌肉收缩是肌凝蛋白(myosin)和肌动蛋白(actin)之间相对滑动的结果。当所谓的交叉桥将肌凝蛋白连接到肌动蛋白上并起到弹簧的作用时,这种滑动就发生了。肌肉收缩模型描述了连接的交叉桥密度的时间变化。在这项研究中,我们考虑了一个双曲输运方程系统。我们的模型包含了所谓的四状态模型,其中分别有连接和分离两种状态的桥梁。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
N,Kato., K,Sato.: "Continuous dependence results for a general model of size-dependent population dynamics"J.Math. Anal. Appl.. 272. 200-222 (2002)
N,Kato.,K,Sato.:“大小依赖的种群动态的一般模型的连续依赖结果”J.Math。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATO Nobuyuki其他文献
KATO Nobuyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATO Nobuyuki', 18)}}的其他基金
Development ofthe infection and proliferation systemof the 1bgenotype HCV based on the new idea
基于新理念的1b基因型HCV感染增殖系统的开发
- 批准号:
24659207 - 财政年份:2012
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Theory of nonlocal nonlinear differential equations and optimization,and applications
非局部非线性微分方程理论与优化及应用
- 批准号:
18540178 - 财政年份:2006
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ANALYSIS OF SYSTEMS OF DIFFERENTIAL EQUATIONS HAVING SEVERAL NONLOCAL TERMS AND APPLICATIONS
具有多项非局部项的微分方程组的分析及应用
- 批准号:
15540172 - 财政年份:2003
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Theory and Applications of Evolution Equations with Nonlocal Conditions
非局部条件演化方程的理论与应用
- 批准号:
10640172 - 财政年份:1998
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Variation of Hepatitis C Viral Genome.
丙型肝炎病毒基因组变异分析。
- 批准号:
02680145 - 财政年份:1990
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
- 批准号:
RGPIN-2018-04177 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Statistical solutions for the open challenges of integrated population models.
针对综合人口模型的开放挑战的统计解决方案。
- 批准号:
2753510 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Studentship
Generalized Nash games concepts: existence, tractability and applications to population models
广义纳什博弈概念:存在性、易处理性及其在人口模型中的应用
- 批准号:
RGPIN-2017-04530 - 财政年份:2022
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
- 批准号:
RGPIN-2018-04177 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Generalized Nash games concepts: existence, tractability and applications to population models
广义纳什博弈概念:存在性、易处理性及其在人口模型中的应用
- 批准号:
RGPIN-2017-04530 - 财政年份:2021
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Generalized Nash games concepts: existence, tractability and applications to population models
广义纳什博弈概念:存在性、易处理性及其在人口模型中的应用
- 批准号:
RGPIN-2017-04530 - 财政年份:2020
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual
Statistical Approaches for Spatio-Temporal Stochastic Population Models
时空随机总体模型的统计方法
- 批准号:
2015273 - 财政年份:2020
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Spreading Speeds and Non-Spreading Solutions for Spatial Population Models with Allee Effects
具有 Allee 效应的空间种群模型的传播速度和非传播解
- 批准号:
1951482 - 财政年份:2020
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Theories of fixed point index and variational inequalities, systems of differential equations and applications to population models
不动点指数和变分不等式理论、微分方程组及其在总体模型中的应用
- 批准号:
RGPIN-2018-04177 - 财政年份:2020
- 资助金额:
$ 1.92万 - 项目类别:
Discovery Grants Program - Individual