Research of System of Nonlinear Diffusion Equations and Related Elliptic Differential Equations

非线性扩散方程组及相关椭圆微分方程组的研究

基本信息

  • 批准号:
    15540216
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2005
  • 项目状态:
    已结题

项目摘要

In this project, we have studied the structure of solutions for the following two types of equations : (a) reaction diffusion systems with nonlinear diffusion in mathematical biology and (b) semilinear diffusion equations describing phase transition phenomenaThe first problem in mathematical biology is given by a system of differential equations with quasilinear diffusion of the formu_t=Δ[φ(u,v)u]+au(1-u-v), v_t=Δ[ψ(u,v)v]+bv(1+du-v),under homogeneous Dirichlet boundary conditions. Here u and v denote population densities of prey and predator species, respectively. It is well known that the corresponding stationary problem has a positive steady-state under a suitable condition. Our main interest is to derive useful information on profile and stability of each positive steady-state. In case φ(u,v)=1 and 4,φ(u,v=1+β u, we have shown that the stationary problem has at least three positive solutions if β is sufficiently large and some other conditions are imposed. Moreover, stability or in … More stability of each positive solution is also investigated.The second problem is given by u_t=ε^2u_<xx>+u(1-u)(u-a(x)) with homogeneous Neumann boundary condition, where 0<a(x)<1. When ε is sufficiently small, it is known that this problem admits various kinds of steady-state solutions. In particular, we are interested in steady state with transition layers and spikes. Here transition layer for a solution means a part of u(x) where u(x) drastically changes from 0 to 1 or 1 to 0 in a very short interval. Such oscillating solutions have been studied by Ai-Chen-Hastings and our group, independently. It has been proved that any transition layer appears only in a neighborhood of x such that a(x)=1/2 and that any spike appears only in a neighborhood of x such that a(x) takes its local maximum or minimum. We have also established more information on profiles of multi-transition layers and multi-spikes, their location and the relationship between profile and stability of steady-state solution with transition layers. Less
在这个项目中,我们研究了以下两类方程的解的结构:(a)数学生物学中具有非线性扩散的反应扩散系统和(B)描述相变现象的半线性扩散方程数学生物学中的第一个问题由具有拟线性扩散的微分方程组给出,方程组为:u_t=Δ[φ(u,v)u]+Au(1-u-v),v_t=Δ[φ(u,v)u],v)v]+bv(1+du-v).这里u和v分别表示猎物和捕食者物种的种群密度。众所周知,在适当的条件下,相应的平稳问题具有正平衡态。我们的主要兴趣是获得有用的信息,每个积极的稳态的配置文件和稳定性。当φ(u,v)=1和4,φ(u,v)=1+β u时,如果β充分大,并附加其它条件,我们证明了该平稳问题至少有三个正解.此外,稳定性或 ...更多信息 第二个问题为u_t=ε^2u_<xx>+u(1-u)(u-a(x)),其中0&lt;a(x)&lt;1.当ε足够小时,已知该问题存在各种稳态解。特别是,我们感兴趣的过渡层和尖峰的稳定状态。这里,解的过渡层是指u(x)的一部分,其中u(x)在很短的时间间隔内从0到1或从1到0急剧变化。Ai-Chen-Hastings和我们的小组已经独立地研究了这种振荡解。已经证明,任何过渡层只出现在x的邻域中,使得a(x)=1/2,并且任何尖峰只出现在x的邻域中,使得a(x)取其局部最大值或最小值。我们还建立了更多的信息,多过渡层和多尖峰的轮廓,它们的位置和轮廓之间的关系和稳定性的稳态解的过渡层。少

项目成果

期刊论文数量(122)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A positive solution for a nonlinear Schrodinger equation in RAINY^{N}
RAINY^{N} 中非线性薛定谔方程的正解
Goro Akagi, Jun Kobayashi, Mitsuharu Otani: "Principle of symmetric criticality and evolution equations"Dynamical Systems and Differential Equations. 1-10 (2003)
Goro Akagi、Jun Kobayashi、Mitsuharu Otani:“对称临界性原理和演化方程”动力系统和微分方程。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
L^q-theory of a singular "winding" integral operator arising from fluid dynamics.
由流体动力学产生的奇异“缠绕”积分算子的 L^q 理论。
A positive solution for a nonlinear Schrödinger equation on Rn
  • DOI:
    10.1512/iumj.2005.54.2502
  • 发表时间:
    2005-06
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    L. Jeanjean;Kazunaga Tanaka
  • 通讯作者:
    L. Jeanjean;Kazunaga Tanaka
Coexistence states for a prey-predator model with cross-diffusion
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMADA Yoshio其他文献

YAMADA Yoshio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMADA Yoshio', 18)}}的其他基金

Study on free boundary problems and reaction-diffusion equations arising in mathematical ecology
数学生态学中的自由边界问题和反应扩散方程研究
  • 批准号:
    16K05244
  • 财政年份:
    2016
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on reaction-diffusion equations and related free boundary problems
反应扩散方程及相关自由边界问题研究
  • 批准号:
    24540220
  • 财政年份:
    2012
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Reaction-Diffusion Systems and Related Nonlinear Problems
反应扩散系统及相关非线性问题的分析
  • 批准号:
    21540229
  • 财政年份:
    2009
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of Theory of Digital Analysis
数字分析理论构建
  • 批准号:
    20200044
  • 财政年份:
    2008
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Innovative Areas (Research a proposed research project)
Research on the structure of solutions for nonlinear systems of reaction-diffusion equations
反应扩散方程非线性系统解的结构研究
  • 批准号:
    18540223
  • 财政年份:
    2006
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SYNTHESIS OF NOVEL NANOCARBONS FROM CARBON PRECURSORS PRERARED BY DEFLUORINATION
由脱氟制备的碳前体合成新型纳米碳
  • 批准号:
    16550166
  • 财政年份:
    2004
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Precision Motion Detection Algorithm using Neural Networks
使用神经网络的精确运动检测算法
  • 批准号:
    13650411
  • 财政年份:
    2001
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of nonlinear diffusion equations and related phase transition problems
非线性扩散方程及相关相变问题分析
  • 批准号:
    12640224
  • 财政年份:
    2000
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Precision Template Matching Method and Its Application to Motion Detection of Image Sequences
精密模板匹配方法的发展及其在图像序列运动检测中的应用
  • 批准号:
    09650417
  • 财政年份:
    1997
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of nonlinear prabolic systems and related elliptic systems
非线性抛物线系统及相关椭圆系统的研究
  • 批准号:
    09640228
  • 财政年份:
    1997
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了