Analysis of nonlinear diffusion equations and related phase transition problems
非线性扩散方程及相关相变问题分析
基本信息
- 批准号:12640224
- 负责人:
- 金额:$ 2.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2000
- 资助国家:日本
- 起止时间:2000 至 2002
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In our project we have mainly discussed the stationary and non-stationary problems for the following reaction diffusion systems with quasilinear diffusion terms:(E) u_l = Δ[(1 + αv + γu)u] + uf (u, v), v_l = Δ[(1 + βv + δv)v] + vg (u, v).This is a well-known system which models the habitat segregation phenomenon between two species. In (E) u, v denote the population densities and f, g represent the interaction between u and v such as Lotka-Volterra competition type or prey-predator type.(1) Non-stationary problem. When the system has a cross-diffusion effect, the existence result of global solutions was restricted to the two dimensional case. We have proved that, if α, γ > 0 and β = δ = 0, then (E) admits a unique global solution without any restrictions on the space dimension and the amplitude of initial data. Our strategy is to decouple the system and study reaction-diffusion equations separately. We combine parabolic fundamental estimates with energy estimates of solutions of parabolic equation with self-diffusion. This method is also valid for the case δ > 0; so that the global existence is shown when the space dimension is less than six.(2) Stationary problem. From the view-point of mathematical biology, it is very important to study positive stationary solutions and to know their number. We have tried to get some conditions for the multiplicity of such positive solutions. In particular, the multiple existence is established if interactions are very large in case of competition model with linear diffusion or if one of cross-diffusion is very large in case of prey-predator model.
本课题主要讨论了具有拟线性扩散项的反应扩散方程组(E)u_l = Δ[(1 + αv + γu)u] + uf(u,v),v_l = Δ[(1 + βv + δv)v] + vg(u,v)的定常和非定常问题,这是一个著名的模拟两个物种之间生境隔离现象的方程组。在(E)中,u,v表示种群密度,f,g表示u和v之间的相互作用,如Lotka-Volterra竞争型或捕食者-被捕食者型。(1)非平稳问题。当系统具有交叉扩散效应时,整体解的存在性结果仅限于二维情形。我们证明了,当α,γ > 0,β = δ = 0时,(E)存在唯一的整体解,且对空间维数和初值的幅值没有任何限制.我们的策略是将系统解耦,分别研究反应扩散方程。我们将抛物型方程解的联合收割机基本估计与能量估计结合起来。该方法对δ > 0的情形也是有效的,从而当空间维数小于6时,证明了该方程的整体存在性. (2)固定问题。从数学生物学的观点来看,研究正稳定解及其个数是非常重要的。我们试图得到这类正解的多重性的一些条件。特别地,如果在具有线性扩散的竞争模型中相互作用非常大,或者如果在食饵-捕食者模型中交叉扩散之一非常大,则多重存在成立。
项目成果
期刊论文数量(72)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
廣瀬宗光, 太田雅人: "Structure of Positive Radial Solutions to Scalar Field Equations with Harmonic Potential"J.Differential Equations. 178. 519-540 (2002)
Munemitsu Hirose、Masato Ota:“具有调和势的标量场方程的正径向解的结构”J.微分方程 178. 519-540 (2002)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.S.Choi, R.Lui, 山田義雄: "Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion"Discrete Continuous Dynamical Systems. 9. 1193-1200 (2003)
Y.S.Choi、R.Lui、Yoshio Yamada:“具有弱交叉扩散的 Shigesada-Kawasaki-Teramoto 模型的全局解的存在”离散连续动力系统。9. 1193-1200 (2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Munemitsu Hirose and Eiji Yanagida: "Global structure of self-similar solutions in a semilinear parabolic equation"J. Math. Anal. Appl.. Vol. 244. 348-368 (2000)
Munemitsu Hirose 和 Eiji Yanagida:“半线性抛物型方程中自相似解的全局结构”J.
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Shingo Takeuchi: "Multiplicity result for a degenerate elliptic equation with logistic reaction"J. Differential Equations. Vol. 137. 138-144 (2001)
Shingo Takeuchi:“具有 Logistic 反应的简并椭圆方程的多重性结果”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.S.Choi, R.Lui, 山田義雄: "Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion"Discrete Continuous Dynamical Systems. (未定). (2003)
Y.S.Choi、R.Lui、Yoshio Yamada:“具有强耦合交叉扩散的 Shigesada-Kawasaki-Teramoto 模型的全局解的存在”离散连续动力系统(待定)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YAMADA Yoshio其他文献
YAMADA Yoshio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YAMADA Yoshio', 18)}}的其他基金
Study on free boundary problems and reaction-diffusion equations arising in mathematical ecology
数学生态学中的自由边界问题和反应扩散方程研究
- 批准号:
16K05244 - 财政年份:2016
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on reaction-diffusion equations and related free boundary problems
反应扩散方程及相关自由边界问题研究
- 批准号:
24540220 - 财政年份:2012
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Reaction-Diffusion Systems and Related Nonlinear Problems
反应扩散系统及相关非线性问题的分析
- 批准号:
21540229 - 财政年份:2009
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Construction of Theory of Digital Analysis
数字分析理论构建
- 批准号:
20200044 - 财政年份:2008
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research on Innovative Areas (Research a proposed research project)
Research on the structure of solutions for nonlinear systems of reaction-diffusion equations
反应扩散方程非线性系统解的结构研究
- 批准号:
18540223 - 财政年份:2006
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SYNTHESIS OF NOVEL NANOCARBONS FROM CARBON PRECURSORS PRERARED BY DEFLUORINATION
由脱氟制备的碳前体合成新型纳米碳
- 批准号:
16550166 - 财政年份:2004
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of System of Nonlinear Diffusion Equations and Related Elliptic Differential Equations
非线性扩散方程组及相关椭圆微分方程组的研究
- 批准号:
15540216 - 财政年份:2003
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Precision Motion Detection Algorithm using Neural Networks
使用神经网络的精确运动检测算法
- 批准号:
13650411 - 财政年份:2001
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Precision Template Matching Method and Its Application to Motion Detection of Image Sequences
精密模板匹配方法的发展及其在图像序列运动检测中的应用
- 批准号:
09650417 - 财政年份:1997
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of nonlinear prabolic systems and related elliptic systems
非线性抛物线系统及相关椭圆系统的研究
- 批准号:
09640228 - 财政年份:1997
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Qualitative and quantitative analysis of non-periodic space-time homogenization problems for nonlinear diffusion equations
非线性扩散方程非周期时空均匀化问题的定性和定量分析
- 批准号:
22K20331 - 财政年份:2022
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
A Novel Geometric Approach to Shocks in Reaction-Nonlinear Diffusion Models
反应非线性扩散模型中激波的一种新颖的几何方法
- 批准号:
DP200102130 - 财政年份:2020
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Projects
Propagation phenomena in reaction-diffusion equations involving nonlinear diffusion and multi-stable reaction term
涉及非线性扩散和多稳态反应项的反应扩散方程中的传播现象
- 批准号:
20K03709 - 财政年份:2020
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on free boundary problems arising in mathematical ecology and related nonlinear diffusion equations
数学生态学中自由边界问题及相关非线性扩散方程的研究
- 批准号:
19K03573 - 财政年份:2019
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis on nonlinear diffusion and dynamic singular structure
非线性扩散与动态奇异结构分析
- 批准号:
19H00639 - 财政年份:2019
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Study of traveling wave and interfacial dynamics in nonlinear diffusion equation
非线性扩散方程中的行波和界面动力学研究
- 批准号:
16K05245 - 财政年份:2016
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Global solution structure in a system of two competing species with nonlinear diffusion effect
具有非线性扩散效应的两种竞争物质系统中的全局解结构
- 批准号:
16K05233 - 财政年份:2016
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Damped Euler-Poisson equations and nonlinear diffusion waves
阻尼欧拉-泊松方程和非线性扩散波
- 批准号:
354724-2011 - 财政年份:2015
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear diffusion of energetic particles in the interstellar medium and in the solar system
高能粒子在星际介质和太阳系中的非线性扩散
- 批准号:
401849-2011 - 财政年份:2015
- 资助金额:
$ 2.24万 - 项目类别:
Discovery Grants Program - Individual
Global bifurcation structure of stationary patterns arising in the SKT model with nonlinear diffusion
非线性扩散 SKT 模型中出现的稳态模式的全局分叉结构
- 批准号:
15K04948 - 财政年份:2015
- 资助金额:
$ 2.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)