Study of nonlinear prabolic systems and related elliptic systems

非线性抛物线系统及相关椭圆系统的研究

基本信息

  • 批准号:
    09640228
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1999
  • 项目状态:
    已结题

项目摘要

(1) Analysis of reaction diffusion systems with cross-diffusion terms : We have discussed reaction diffusion systems with cross-diffusion and reaction of Lotka-Volterra type. These systems appear in mathematical biology. Mathematically, it is very important to derive sufficient conditions for the existence of time-global solutions and get information on the structure of positive stationary solutions (biologically, coexistence states). As to the non-stationary problem a global existence result has been obtained in one and two space-dimensions. For the stationary problem with zero Dirichlet boundary condition, we have studied uniqueness and non-uniqueness of positive stationary solutions as well as sufficient conditions for their existence. It is proved that our system admits multiple existence of postive solutions. Moreover, numerical simulations exhibit complicate structure of positive stationary solutions such as bifurcation of symmetric solutions from semitrivial solutions and, additionally, bifurcation of asymmetric solutions from symmetric ones.(2) Analysis of quasilinear parabolic equations with p-Laplacian and logistic terms : Although the nonlinearity and degeneracy of p-Laplacian brings about the difficulty, it also gives remarkable nonlinear phenomenon. We have obtained satisfactory understanding on the structure of stationary solutions in higher space dimension as well as one dimension. In particular, we also have studied profiles of stationary solutions and proved interesting results on flat hats which stem from degenerate diffusion. Furthermore, we could show interesting information on the temporal and spatial change of non-stationary solutions.
(1) 具有交叉扩散项的反应扩散系统的分析:我们讨论了具有交叉扩散项的反应扩散系统和Lotka-Volterra 类型的反应。这些系统出现在数学生物学中。在数学上,推导时间全局解存在的充分条件并获得正稳态解(生物学上的共存状态)结构的信息非常重要。对于非平稳问题,在一维和二维空间上得到了全局存在结果。对于零狄利克雷边界条件的平稳问题,我们研究了正平稳解的唯一性和非唯一性及其存在的充分条件。证明了我们的系统承认正解的多重存在。此外,数值模拟表现出正稳态解的复杂结构,例如对称解与半平凡解的分叉,以及非对称解与对称解的分叉。(2)带有p-拉普拉斯和逻辑项的拟线性抛物型方程的分析:虽然p-拉普拉斯的非线性和简并性带来了困难,但也给出了 显着的非线性现象。我们对高维空间和一维的平稳解的结构已经取得了令人满意的理解。特别是,我们还研究了平稳解的轮廓,并证明了源自简并扩散的平帽的有趣结果。此外,我们可以显示有关非平稳解的时间和空间变化的有趣信息。

项目成果

期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
杉山由恵、大谷光春: "C^∽ solutions of generalized porous medium equations"Proceedings of the Conference on Nonlinear Partial Differential Equations. 62-70 (1998)
Yoshie Sugiyama、Mitsuharu Otani:“广义多孔介质方程的 C^∽ 解”非线性偏微分方程会议记录 62-70 (1998)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Yoshida & Y.Yamada: "Global attractivity of coexistence states for a certain class of reaction diffusion systems with 3×3 cooperative matrices."Advances in Mathematical Sciences and Applications. Vol.9. 563-598 (1999)
A.Yoshida 和 Y.Yamada:“具有 3×3 协作矩阵的某类反应扩散系统的共存态的全局吸引力”。数学科学与应用进展,第 9 卷(1999 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Shingo Takeuchi: "Positive solutions of a degenerate elliptic equation with logistic reaction."Proceeding of the American Mathematical Society. (To appear). (2000)
Shingo Takeuchi:“具有逻辑反应的简并椭圆方程的正解。”美国数学会学报。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
廣瀬宗光: "Structure of positive radial solutions to the Haraux-Weissler equation, II"Adv. Mathematical Sciences and Applications. Vol.9,No.1. 473-497 (1999)
Munemitsu Hirose:“Haraux-Weissler 方程的正径向解的结构,II”Adv. 数学科学与应用,第 9 卷,第 473-497 期(1999 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
山田 義雄: "Coexistence States for Some Population Models with Cross-Diffusion" Forma. 12,2. 153-166 (1997)
Yoshio Yamada:“一些具有交叉扩散的群体模型的共存状态”Forma 153-166 (1997)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YAMADA Yoshio其他文献

YAMADA Yoshio的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YAMADA Yoshio', 18)}}的其他基金

Study on free boundary problems and reaction-diffusion equations arising in mathematical ecology
数学生态学中的自由边界问题和反应扩散方程研究
  • 批准号:
    16K05244
  • 财政年份:
    2016
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on reaction-diffusion equations and related free boundary problems
反应扩散方程及相关自由边界问题研究
  • 批准号:
    24540220
  • 财政年份:
    2012
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of Reaction-Diffusion Systems and Related Nonlinear Problems
反应扩散系统及相关非线性问题的分析
  • 批准号:
    21540229
  • 财政年份:
    2009
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of Theory of Digital Analysis
数字分析理论构建
  • 批准号:
    20200044
  • 财政年份:
    2008
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Innovative Areas (Research a proposed research project)
Research on the structure of solutions for nonlinear systems of reaction-diffusion equations
反应扩散方程非线性系统解的结构研究
  • 批准号:
    18540223
  • 财政年份:
    2006
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SYNTHESIS OF NOVEL NANOCARBONS FROM CARBON PRECURSORS PRERARED BY DEFLUORINATION
由脱氟制备的碳前体合成新型纳米碳
  • 批准号:
    16550166
  • 财政年份:
    2004
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research of System of Nonlinear Diffusion Equations and Related Elliptic Differential Equations
非线性扩散方程组及相关椭圆微分方程组的研究
  • 批准号:
    15540216
  • 财政年份:
    2003
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Precision Motion Detection Algorithm using Neural Networks
使用神经网络的精确运动检测算法
  • 批准号:
    13650411
  • 财政年份:
    2001
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of nonlinear diffusion equations and related phase transition problems
非线性扩散方程及相关相变问题分析
  • 批准号:
    12640224
  • 财政年份:
    2000
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Precision Template Matching Method and Its Application to Motion Detection of Image Sequences
精密模板匹配方法的发展及其在图像序列运动检测中的应用
  • 批准号:
    09650417
  • 财政年份:
    1997
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了