Wellposedness of the Cauchy problems for hyperbolic systems with large data
大数据双曲系统柯西问题的适定性
基本信息
- 批准号:16540153
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Semigroups of locally Lipschitz operators are characterized by subtangential conditions and semilinear stability conditions in terms of a family of metric-like functionals. The result is applied to the mixed problem for the complex Ginzburg-Landau equation.2. It is interesting to compute solutions of Cauchy problems for partial differential equations numerically and to discuss the question of convergence which arises in that case. Such problems are treated by the theory of semigroups of operators. A convergence theorem and an approximation theorem for semigroups of Lipschitz operators are given. These theorems are applied to a semi-discrete approximation problem for a quasi-linear wave equation with damping and a finite difference method for a quasi-linear equation of Kirchhoff type.3. An approximation theorem is given for abstract quasi-linear evolution equations in the sense of Hadamard. The result is applied to an approximation problem for a degenerate Kirchhoff equation.4. The situation that the domains of differential operators are not dense in the underlying space arises when the mixed problems for certain partial differential equations in the space of continuous functions are studied. This leads to the study of the abstract Cauchy problems for quasi-linear evolution equations with non-densely defined operators. The result is applied to obtain the global wellposedness for quasi-linear wave equations of Kirchhoff type with acoustic boundary conditions and the local solvability of quasi-linear wave equations with Wentzell boundary conditions in the space of continuous functions.
1.局部Lipschitz算子半群的特征是用度量泛函族表示的次切条件和半线性稳定性条件。将所得结果应用于复Ginzburg-Landau方程的混合问题.有趣的是计算解的柯西问题的偏微分方程数值和讨论的问题的收敛性出现在这种情况下。这类问题由算子半群理论来处理。给出了Lipschitz算子半群的一个收敛定理和一个逼近定理。将这些定理应用于一类带阻尼的拟线性波动方程的半离散逼近问题和一类Kirchhoff型拟线性方程的有限差分方法.给出了抽象拟线性发展方程在Hadamard意义下的一个逼近定理。并将所得结果应用于一类退化的Kirchhoff方程的逼近问题.在连续函数空间中研究某些偏微分方程的混合问题时,会出现微分算子域在基空间中不稠密的情况.这导致了拟线性发展方程的抽象柯西问题的研究与非稠密定义的运营商。应用所得结果得到了连续函数空间中具有声学边界条件的拟线性波动方程的整体适定性和具有Wentzell边界条件的拟线性波动方程的局部可解性.
项目成果
期刊论文数量(40)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evolution operators generated by non-densely defined operators
由非密集定义算子生成的演化算子
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Hirokazu;Oka
- 通讯作者:Oka
Semigroups of locally Lipschitz operators associated with semilinear evolution equations
- DOI:10.1016/j.jmaa.2006.08.028
- 发表时间:2007-06
- 期刊:
- 影响因子:1.3
- 作者:Yoshikazu Kobayashi;Toshitaka Matsumoto;N. Tanaka
- 通讯作者:Yoshikazu Kobayashi;Toshitaka Matsumoto;N. Tanaka
Locally Lipschitz continuous integrated semigroups
局部 Lipschitz 连续积分半群
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:T.Kawai;Y.Takei;Naoki Tanaka
- 通讯作者:Naoki Tanaka
Convergence and approximation of semigroups of Lipshitz operators
Lipshitz算子半群的收敛与逼近
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Y.Kobayashi;N.Tanaka
- 通讯作者:N.Tanaka
Approximation of abstract quasilinear evolution equations in the sense of Hadamard
Hadamard意义上的抽象拟线性演化方程的逼近
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Hirokazu;Oka;Hirokazu Oka;Yoshikazu Kobayashi;Toshitaka Matsumoto;Naoki Tanaka
- 通讯作者:Naoki Tanaka
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANAKA Naoki其他文献
エッジ情報を用いた全方位カメラの映像中の文字列検出
使用边缘信息进行全向摄像机视频中的字符串检测
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
YOSHIDA Hiromi;TANAKA Naoki;猿田和樹;川上 祐也,木幡 稔;夏目祐輔 - 通讯作者:
夏目祐輔
EMM2011-66
EMM2011-66
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
YOSHIDA Hiromi;NAGAMATSU Takashi;TANAKA Naoki;張興国;木幡 稔 - 通讯作者:
木幡 稔
SIFT特徴を用いた歩行者検知に関する検討
基于SIFT特征的行人检测研究
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
YOSHIDA Hiromi;NAGAMATSU Takashi;TANAKA Naoki;張興国 - 通讯作者:
張興国
言い真似に基づく音声符号化における話者適応法の検討
基于模仿的语音编码中说话人自适应方法的研究
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
YOSHIDA Hiromi;NAGAMATSU Takashi;TANAKA Naoki;張興国;木幡 稔;土田寛子;T.Shiota and T. Nishitani;竹田翔 - 通讯作者:
竹田翔
TANAKA Naoki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANAKA Naoki', 18)}}的其他基金
Evaluating the pathogenesis of non-alcoholic steatohepatitis from the viewpoint of xenobiotic metabolism
从外源代谢角度评价非酒精性脂肪性肝炎的发病机制
- 批准号:
16K08734 - 财政年份:2016
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on road surface monitoring system based on laser imaging system
基于激光成像系统的路面监测系统研究
- 批准号:
22500154 - 财政年份:2010
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solvability of differential equations from the point of view of the continuous dependence of solutions on their initial data
从解对其初始数据的连续依赖的角度来看微分方程的可解性
- 批准号:
22540183 - 财政年份:2010
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of chaperone-peptide beads for control of toxic nano-particle
开发用于控制有毒纳米颗粒的伴侣肽珠
- 批准号:
20550111 - 财政年份:2008
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of pathogenesis of alcoholic liver disease and development of novel therapies using PPARalpha-null mice
使用 PPARα 缺失小鼠分析酒精性肝病的发病机制并开发新疗法
- 批准号:
19790476 - 财政年份:2007
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Wellposedness of differential equations whose solutions depend Lipschitz continuously on their initial data
解连续依赖于 Lipschitz 初始数据的微分方程的适定性
- 批准号:
19540177 - 财政年份:2007
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular property and functional control of chaperone-like polymer
类伴侣聚合物的分子特性及功能调控
- 批准号:
16550109 - 财政年份:2004
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of Extraction Method of Road Elements from Road surface Image Based on Morphology.
基于形态学的路面图像道路元素提取方法研究。
- 批准号:
15500111 - 财政年份:2003
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Well-posedness and approximation of Cauchy problems for hyperbolic systems
双曲系统柯西问题的适定性和逼近
- 批准号:
14540175 - 财政年份:2002
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Character and Line Figure Recognition in an Image
图像中的字符和线条识别
- 批准号:
10680404 - 财政年份:1998
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
On a p-Laplace type evolution equation with random variable exponent and a stochastic force
具有随机变量指数和随机力的p-拉普拉斯型演化方程
- 批准号:
259634327 - 财政年份:2014
- 资助金额:
$ 2.3万 - 项目类别:
Research Grants
Geometric structure-preserving finite difference method for vector-valued evolution equation
向量值演化方程的几何保结构有限差分法
- 批准号:
24654026 - 财政年份:2012
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Synthetic study of nonlinear evolution equation and its related topics
非线性演化方程及其相关课题的综合研究
- 批准号:
21340032 - 财政年份:2009
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Reserch on the stability of solutions of geometric evolution equation using group equivariance
利用群等方差研究几何演化方程解的稳定性
- 批准号:
17540188 - 财政年份:2005
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Variational problem and evolution equation of curves and surfaces
曲线曲面的变分问题及演化方程
- 批准号:
14204004 - 财政年份:2002
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Evolution equation and the Ricci curvature of complex manifolds
复流形的演化方程和里奇曲率
- 批准号:
5257825 - 财政年份:2002
- 资助金额:
$ 2.3万 - 项目类别:
Research Grants
Reseach on a nonlinear evolution equation including chaos and soliton.
研究包含混沌和孤子的非线性演化方程。
- 批准号:
61540277 - 财政年份:1986
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)














{{item.name}}会员




