Representation theory and measure theory of infinite-dimensional groups and related topics
无限维群的表示论和测度论及相关话题
基本信息
- 批准号:16540162
- 负责人:
- 金额:$ 0.64万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the first half period, I considered the representations of the group of diffeomorphisms denoted by Diff_0(M) on smooth manifolds M.Historically we have many analysis on this group, however my researching object is a natural representation on L^2 space overM^∞ derived from a restricted product measure ν_E of a smooth measure on M with infinite mass. ν_E is quasi-invariant under the diagonal action of Diff_0(M), and hence we have a natural representation T of Diff_0(M) over the L^2 space.Secondly, take a unitary representation II of the infinite permutation group S of the finite permutations of the natural numbers, and take functions f on M^∞ that have properties (1) f(xσ)=II(σ)^<-1>f(x) (2) f(x) is square summable. Let H(Σ) be the space of all such f.We introduce another natural representation of Diff_0(M) on this space, similarly as above. Put Σ:=(E,II). Then we have unitary representations (T(g), H(Σ)), g∈ Diff_0(M), and we have already known that these representations are all irre … More ducible.In the present research, I investigated the irreducible components of the representation T, and clarified that they are nothing but the above (T(g), H(Σ)).In the later half period, I turned my attention to the applications of Diff_0(M). For example, it is interesting to find functional equations through the representations of Diff_0(M) via analysis of the infinite permutation group or the theory of asymptotic behavior of Young diagrams. Another one is an approach to a realization of irreducible component of the regular representation of S through the representations of Diff_0(M).After reading preceding bibliographies, in particular that by E Thoma, and further considering extreme decomposition of positive-definite functions, I observed the difference between irreducible decomposition and extreme one.As is well-known, extreme decomposition contains irreducible ones of the corresponding unitary representation, and besides another decomposition like the Choqet theorem. In this period, I studied how these two concepts connect with each other and obtained a result for the time being. However it is inconvenient for applications of this result to concrete problems, so I am trying to improve it more useful forms. I hope it will be useful in the analysis of the regular representation of S. Less
在前半段,我考虑了平滑歧管上用diff_0(m)表示的一组差异形态的表示,我们对这一组进行了许多分析,但是我的研究对象是从l^2 space overm^∞衍生出的自然表示,这些代表是从限制的产品测量值c上的限制性测量的无限质量质量的限制性测量。 ν_e在diff_0(m)的对角性作用下是准不变的,因此,在l^2空间上,我们具有diff_0(m)的自然表示。第二,以统一的统一置入率s的统一代表II,对天然数量的有限置置置换术的有限置置率,并在属性上功能functions portions portion prounn prounct prounn protion prounct proptions(1)(1)(1)(1) f(xσ)= ii(σ)^<-1> f(x)(2)f(x)是正方形的。令h(σ)为所有此类F的空间。我们在此空间上引入了另一个自然表示,如上所述。 putσ:=(E,II)。然后,我们具有单一的表示(t(g),h(σ)),gd diff_0(m),我们已经知道这些表示形式都不是不可能的……更加可言。例如,有趣的是,通过分析无限置换组或年轻图的不对称行为理论,通过DIFF_0(M)的表示来找到功能方程。另一个是一种方法,可以通过diff_0(m)的代表来实现s定期表示不可证明的组成部分。在阅读之前阅读之前,特别是通过e thoma,并进一步考虑了正常功能的极端分解,我还观察到了不可用的分解和极端的差异。诸如Choqet定理之类的另一个分解。在此期间,我研究了这两个概念如何相互联系,并暂时获得了结果。但是,对于该结果将其用于具体问题是不方便的,因此我试图改善它更有用的形式。我希望它将在分析定期代表的分析中很有用。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unitary representations of the group of diffeomorphisms via restricted product measures with infinite mass
通过具有无限质量的受限乘积测度的微分同胚群的酉表示
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:S.Koike;H.Morimoto;H.Shimomura
- 通讯作者:H.Shimomura
Unitary representations of the group of diffesmorphisens via restinctd product measures with infinite mass II
通过具有无限质量 II 的限制乘积测度的 diffesmorphisens 群的酉表示
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Unitary representations of the group of diffeomorphisms via restricted measures with infinite mass,
通过具有无限质量的受限测量的微分同胚群的酉表示,
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:O'uchi;Moto;H.Shimomura
- 通讯作者:H.Shimomura
Irreducible decompositions of infinite-dimensional groups
无限维群的不可约分解
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:M.Kawashita;W.Kawashita;H.Soga;N.Yamaoka;H.Shimomura
- 通讯作者:H.Shimomura
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIMOMURA Hiroaki其他文献
SHIMOMURA Hiroaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHIMOMURA Hiroaki', 18)}}的其他基金
Representation and measure theory of infinite dimensional moues and its applications
无限维运动的表示与测度理论及其应用
- 批准号:
18540184 - 财政年份:2006
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Infinite Dimensional Representations and Related Topics
无限维表示及相关主题
- 批准号:
14540167 - 财政年份:2002
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Infinite Dimensional Representations and Related Topics
无限维表示及相关主题
- 批准号:
12640164 - 财政年份:2000
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Infinite Dimensional Representation, Measure Theory and Related Topics
无限维表示、测度论及相关主题
- 批准号:
09640171 - 财政年份:1997
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似国自然基金
社区社会资本对居民心理健康的影响机制、群体差异与社区治理策略研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用HERV-K(HML-2)多态性探讨不同种族群体的遗传多样性和疾病易感性差异
- 批准号:32200491
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
利用HERV-K(HML-2)多态性探讨不同种族群体的遗传多样性和疾病易感性差异
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社区社会资本对居民心理健康的影响机制、群体差异与社区治理策略研究
- 批准号:72204004
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于参保群体寿命差异的基本养老保险收入再分配效应研究
- 批准号:72174179
- 批准年份:2021
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Diffeomorphism group and graph homology
微分同胚群和图同源性
- 批准号:
21K03225 - 财政年份:2021
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Diffeomorphism group of the circle and discontinuous groups of theuniversal Teichmuller curve
圆的微分同胚群与通用Teichmuller曲线的不连续群
- 批准号:
22740034 - 财政年份:2010
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Noncommutative Geometry and groupoid
非交换几何和群曲面
- 批准号:
18540093 - 财政年份:2006
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation and measure theory of infinite dimensional moues and its applications
无限维运动的表示与测度理论及其应用
- 批准号:
18540184 - 财政年份:2006
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Diffeomorphism Groups of Manifolds with Geometric Structures
几何结构流形微分同胚群的研究
- 批准号:
17540098 - 财政年份:2005
- 资助金额:
$ 0.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)