Representation theory and measure theory of infinite-dimensional groups and related topics

无限维群的表示论和测度论及相关话题

基本信息

  • 批准号:
    16540162
  • 负责人:
  • 金额:
    $ 0.64万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2005
  • 项目状态:
    已结题

项目摘要

In the first half period, I considered the representations of the group of diffeomorphisms denoted by Diff_0(M) on smooth manifolds M.Historically we have many analysis on this group, however my researching object is a natural representation on L^2 space overM^∞ derived from a restricted product measure ν_E of a smooth measure on M with infinite mass. ν_E is quasi-invariant under the diagonal action of Diff_0(M), and hence we have a natural representation T of Diff_0(M) over the L^2 space.Secondly, take a unitary representation II of the infinite permutation group S of the finite permutations of the natural numbers, and take functions f on M^∞ that have properties (1) f(xσ)=II(σ)^<-1>f(x) (2) f(x) is square summable. Let H(Σ) be the space of all such f.We introduce another natural representation of Diff_0(M) on this space, similarly as above. Put Σ:=(E,II). Then we have unitary representations (T(g), H(Σ)), g∈ Diff_0(M), and we have already known that these representations are all irre … More ducible.In the present research, I investigated the irreducible components of the representation T, and clarified that they are nothing but the above (T(g), H(Σ)).In the later half period, I turned my attention to the applications of Diff_0(M). For example, it is interesting to find functional equations through the representations of Diff_0(M) via analysis of the infinite permutation group or the theory of asymptotic behavior of Young diagrams. Another one is an approach to a realization of irreducible component of the regular representation of S through the representations of Diff_0(M).After reading preceding bibliographies, in particular that by E Thoma, and further considering extreme decomposition of positive-definite functions, I observed the difference between irreducible decomposition and extreme one.As is well-known, extreme decomposition contains irreducible ones of the corresponding unitary representation, and besides another decomposition like the Choqet theorem. In this period, I studied how these two concepts connect with each other and obtained a result for the time being. However it is inconvenient for applications of this result to concrete problems, so I am trying to improve it more useful forms. I hope it will be useful in the analysis of the regular representation of S. Less
在前半段,我考虑了平滑歧管上用diff_0(m)表示的一组差异形态的表示,我们对这一组进行了许多分析,但是我的研究对象是从l^2 space overm^∞衍生出的自然表示,这些代表是从限制的产品测量值c上的限制性测量的无限质量质量的限制性测量。 ν_e在diff_0(m)的对角性作用下是准不变的,因此,在l^2空间上,我们具有diff_0(m)的自然表示。第二,以统一的统一置入率s的统一代表II,对天然数量的有限置置置换术的有限置置率,并在属性上功能functions portions portion prounn prounct prounn protion prounct proptions(1)(1)(1)(1) f(xσ)= ii(σ)^<-1> f(x)(2)f(x)是正方形的。令h(σ)为所有此类F的空间。我们在此空间上引入了另一个自然表示,如上所述。 putσ:=(E,II)。然后,我们具有单一的表示(t(g),h(σ)),gd diff_0(m),我们已经知道这些表示形式都不是不可能的……更加可言。例如,有趣的是,通过分析无限置换组或年轻图的不对称行为理论,通过DIFF_0(M)的表示来找到功能方程。另一个是一种方法,可以通过diff_0(m)的代表来实现s定期表示不可证明的组成部分。在阅读之前阅读之前,特别是通过e thoma,并进一步考虑了正常功能的极端分解,我还观察到了不可用的分解和极端的差异。诸如Choqet定理之类的另一个分解。在此期间,我研究了这两个概念如何相互联系,并暂时获得了结果。但是,对于该结果将其用于具体问题是不方便的,因此我试图改善它更有用的形式。我希望它将在分析定期代表的分析中很有用。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Unitary representations of the group of diffeomorphisms via restricted product measures with infinite mass
通过具有无限质量的受限乘积测度的微分同胚群的酉表示
Unitary representations of the group of diffesmorphisens via restinctd product measures with infinite mass II
通过具有无限质量 II 的限制乘积测度的 diffesmorphisens 群的酉表示
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Unitary representations of the group of diffeomorphisms via restricted measures with infinite mass,
通过具有无限质量的受限测量的微分同胚群的酉表示,
Irreducible decompositions of infinite-dimensional groups
无限维群的不可约分解
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Kawashita;W.Kawashita;H.Soga;N.Yamaoka;H.Shimomura
  • 通讯作者:
    H.Shimomura
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHIMOMURA Hiroaki其他文献

SHIMOMURA Hiroaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHIMOMURA Hiroaki', 18)}}的其他基金

Representation and measure theory of infinite dimensional moues and its applications
无限维运动的表示与测度理论及其应用
  • 批准号:
    18540184
  • 财政年份:
    2006
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Infinite Dimensional Representations and Related Topics
无限维表示及相关主题
  • 批准号:
    14540167
  • 财政年份:
    2002
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Infinite Dimensional Representations and Related Topics
无限维表示及相关主题
  • 批准号:
    12640164
  • 财政年份:
    2000
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Infinite Dimensional Representation, Measure Theory and Related Topics
无限维表示、测度论及相关主题
  • 批准号:
    09640171
  • 财政年份:
    1997
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

社区社会资本对居民心理健康的影响机制、群体差异与社区治理策略研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
利用HERV-K(HML-2)多态性探讨不同种族群体的遗传多样性和疾病易感性差异
  • 批准号:
    32200491
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
利用HERV-K(HML-2)多态性探讨不同种族群体的遗传多样性和疾病易感性差异
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
社区社会资本对居民心理健康的影响机制、群体差异与社区治理策略研究
  • 批准号:
    72204004
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于参保群体寿命差异的基本养老保险收入再分配效应研究
  • 批准号:
    72174179
  • 批准年份:
    2021
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Diffeomorphism group and graph homology
微分同胚群和图同源性
  • 批准号:
    21K03225
  • 财政年份:
    2021
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Diffeomorphism group of the circle and discontinuous groups of theuniversal Teichmuller curve
圆的微分同胚群与通用Teichmuller曲线的不连续群
  • 批准号:
    22740034
  • 财政年份:
    2010
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Noncommutative Geometry and groupoid
非交换几何和群曲面
  • 批准号:
    18540093
  • 财政年份:
    2006
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representation and measure theory of infinite dimensional moues and its applications
无限维运动的表示与测度理论及其应用
  • 批准号:
    18540184
  • 财政年份:
    2006
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Diffeomorphism Groups of Manifolds with Geometric Structures
几何结构流形微分同胚群的研究
  • 批准号:
    17540098
  • 财政年份:
    2005
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了