Infinite Dimensional Representations and Related Topics

无限维表示及相关主题

基本信息

  • 批准号:
    14540167
  • 负责人:
  • 金额:
    $ 0.64万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2003
  • 项目状态:
    已结题

项目摘要

During this period, the following results were obtained :Subsequently I have considered unitary representations of the group of diffeomorphisms on smooth manifolds M. I denote a group of these diffeomorphisms with compact support by Diff_o(m). The group has many informations of the original manifold M, and it has close connections with Quantum Dynamics, so it is interesting to investigate representations of Diff_o(M). In fact, previously, various authors have studied and constructed many interesting unitary representations and their linear versions, most of them were irreducible.In my research, I have obtained a series of new representations via restricted product of smooth measures with infinite mass, which is essentially inequivalent from what have been obtained now. More exactly, let E:={E_n} be a countable family(which is called μ-unital) of Borel sets in M that has the following three properties.(1)0<μ(E_n)<+∞(2)Σ|1-μ(E_n)|<+∞(3)E_n are mutually disjoint.Using μ-unital E, firstly … More we have a restricted product measure ν_E on M^∞. Secondly, we take an irreducible unitary representations Π of the infinite symmetric group whose element σ permutes only a finite number of natural numbers, and consider measurable functions f on M^∞ that have the properties ;(1)f(xσ)=Π(σ)^<-1>f(x) (2)f(x) is square summable on D_E, where D_E is a Borel set such that the sets D_Eσ obtained from the action of σ on D_E are mutually disjoint, and its union is full measure with respect to ν_E. Let us denote a set of such f by H(Σ), and induce natural representation on L^2 obtained from the diagonal action of Diff_o((M) on H(Σ), whereΣ=(E,II). Then we have a unitary representation (T(g),H(Σ)), g∈Diff_o((M). The main results on the representation is as follows :[1](T(g),H(Σ)) is irreducible.[2]Two representations onΣ=(E,IT) and Σ=(E',II') are equivalent, if and only if there exists a permutation(may be an infinite one) a auch that II and II' are equivalent through a, and Σ|μ(E'_<a(n)>-μ(E_n) |<+∞.One more main result is to show that every unitary representations of Diff_o((M) has an irreducible decomposition under a fairly mild condition. The proof consists of analyzing Mautner's result on classical locally compact groups and applying the Shavgulidze measure on the diffeomorphism groups. Less
在此期间,得到了以下结果:随后,我考虑了光滑流形M上的非同态群的酉表示。用Diff_o(m)表示具有紧支集的这类同构群.群中包含了原流形M的许多信息,并且与量子动力学有着密切的联系,因此研究Diff_o(M)的表示是一个有趣的问题。事实上,在此之前,许多作者已经研究和构造了许多有趣的酉表示及其线性形式,其中大多数是不可约的,在我的研究中,我通过具有无限质量的光滑测度的限制乘积得到了一系列新的表示,这与现在已经得到的表示本质上是不等价的。更确切地说,设E:={E_n}是M中的可数波莱尔集族(称为μ-酉),它具有以下三个性质。(1)0<μ(E_n)<+∞(2)|1-μ(E_n)|<+∞(3)E_n互不相交。 ...更多信息 我们在M^∞上有一个限制乘积测度ν_E。其次,我们对元素σ只置换有限个自然数的无限对称群取一个不可约酉表示,并考虑M^∞上的可测函数f具有以下性质:(1)f(xσ)= f(σ)^<-1>f(x)(2)f(x)在D_E上平方可和,其中D_E是Borel集,使得由σ在D_E上的作用得到的集合D_Eσ互不相交,它的并集是关于ν_E的完全测度。我们用H(M)表示这样的f的集合,并从Diff_o(M)对H(M)的对角作用导出L^2上的自然表示,其中M =(E,II).则有一个酉表示(T(g),H(G)),g∈Diff_o((M)). [1](T(g),H(g))是不可约的. [2]两个关于A =(E,IT)和A =(E ',II')的表示是等价的,当且仅当存在一个置换(可能是无限的)a,使得II和II'通过a等价,并且A =(E',II ')是等价的。|μ(E'_&lt;a(n)&gt;-μ(E_n)|另一个主要结果是证明了Diff_o((M))的每一个酉表示在一个相当温和的条件下都有一个不可约分解.证明包括分析Mautner关于经典局部紧群的结果和将Shavgulidze测度应用于同构群。少

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Shimomura: "Quasi-invariant measures on the group of diffeomorphisms and smooth vectors of unitary representations"Journal of Functional Analysis. 187. 406-441 (2001)
H.Shimomura:“微分同胚群和酉表示的平滑向量的准不变测度”泛函分析杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Shimomura: "Irreducible decompositions of unitary representations of infinite-dimensional groups"Journal of Functional Analysis. (Submitted).
H.Shimomura:“无限维群的单一表示的不可约分解”泛函分析杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Shimomura: "Unitary representations of the group of diffeomorphisms via restricted product measures with infinite mass."JPSP-DFG Japan-Germany Joint Seminar, IDHA. (To appear in Proceedings). (2003)
H.Shimomura:“通过无限质量的受限乘积测度微分同胚群的酉表示。”JPSP-DFG 日本-德国联合研讨会,IDHA。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Shimomura: "Unitary representations of the group of diffeomorphisms via restricted product measures with infinite mass"Journal of Mathematical Society of Japan. (Submitted).
H.Shimomura:“通过无限质量的受限乘积测度微分同胚群的酉表示”日本数学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Shimomura: "Unitary representations of the group of diffeomorphisms via restricted product measures with infinite mass."Journal of Mathematical Society of Japan. (Submitted).
H.Shimomura:“通过无限质量的受限乘积测度微分同胚群的酉表示。”日本数学会杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHIMOMURA Hiroaki其他文献

SHIMOMURA Hiroaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHIMOMURA Hiroaki', 18)}}的其他基金

Representation and measure theory of infinite dimensional moues and its applications
无限维运动的表示与测度理论及其应用
  • 批准号:
    18540184
  • 财政年份:
    2006
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representation theory and measure theory of infinite-dimensional groups and related topics
无限维群的表示论和测度论及相关话题
  • 批准号:
    16540162
  • 财政年份:
    2004
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Infinite Dimensional Representations and Related Topics
无限维表示及相关主题
  • 批准号:
    12640164
  • 财政年份:
    2000
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Infinite Dimensional Representation, Measure Theory and Related Topics
无限维表示、测度论及相关主题
  • 批准号:
    09640171
  • 财政年份:
    1997
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Smooth 4-manifolds, hyperbolic 3-manifolds and diffeomorphism groups
光滑 4 流形、双曲 3 流形和微分同胚群
  • 批准号:
    2304841
  • 财政年份:
    2023
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Continuing Grant
CAREER: Mapping class groups, diffeomorphism groups, and moduli spaces
职业:映射类群、微分同胚群和模空间
  • 批准号:
    2236705
  • 财政年份:
    2023
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Continuing Grant
CAREER: New Directions in Foliation Theory and Diffeomorphism Groups
职业:叶状理论和微分同胚群的新方向
  • 批准号:
    2239106
  • 财政年份:
    2023
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Continuing Grant
Homotopy Theory of Foliations and Diffeomorphism Groups
叶状结构和微分同胚群的同伦理论
  • 批准号:
    2113828
  • 财政年份:
    2021
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Standard Grant
Diffeomorphism group and graph homology
微分同胚群和图同源性
  • 批准号:
    21K03225
  • 财政年份:
    2021
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Index theorem relevant to the invariants of diffeomorphism groups
与微分同胚群不变量相关的指数定理
  • 批准号:
    20K03580
  • 财政年份:
    2020
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation of new turbulence analysis method by using diffeomorphism groups of Riemannian geometry
利用黎曼几何微分同胚群创建新的湍流分析方法
  • 批准号:
    18KK0379
  • 财政年份:
    2019
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Lorentz invariance and diffeomorphism invariance in modified gravity
修正引力中的洛伦兹不变性和微分同胚不变性
  • 批准号:
    2249060
  • 财政年份:
    2019
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Studentship
Diffeomorphism and homeomorphism groups of 4-manifolds and gauge theory for families
4流形的微分同胚和同胚群以及族规范理论
  • 批准号:
    19K23412
  • 财政年份:
    2019
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Geometry of diffeomorphism groups and Hamiltonian systems
微分同胚群和哈密顿系统的几何
  • 批准号:
    RGPIN-2014-05036
  • 财政年份:
    2018
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了