Noncommutative Geometry and groupoid

非交换几何和群曲面

基本信息

  • 批准号:
    18540093
  • 负责人:
  • 金额:
    $ 2.66万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2009
  • 项目状态:
    已结题

项目摘要

We studied noncommutative geometry, cyclic theory, K-theory, Dirac operator on a groupoid. It is very important to resolve the fundamental problems and extension of index theory to noncommutative theory. On the other hand, we also studied nonformal deformation quantization and transcendental elements which appear nonformal deformation quantization, because they are regarded as representative of noncommutative phenomena.
我们研究了广群上的非交换几何、循环理论、K-理论、Dirac算子。这对于解决指标理论的基本问题和推广到非对易理论是非常重要的。另一方面,我们还研究了非形式形变量子化和出现非形式形变量子化的超越元,因为它们被认为是非对易现象的代表。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the integrability of deformation quantized Toda lattice.
关于形变量子化Toda晶格的可积性。
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y.Maeda;H.Omori;et al.;N.Miyazaki
  • 通讯作者:
    N.Miyazaki
Characteristic classes relating to quantizaton
与量化相关的特征类
A Lie group structure for automorphisms of a Contact Weyl manifold
接触Weyl流形自同构的李群结构
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hideki Omori;Yoshiaki Maeda;Naoya Miyazaki;Akira Yoshioka;Naoya Miyazaki
  • 通讯作者:
    Naoya Miyazaki
Characteristic classes relating to quantizat
与 quantizat 相关的特征类
A Lie group structure for automorphisms of a contact Weyl manifold in From Geometry to Quantum Mechanics
《从几何到量子力学》中接触Weyl流形自同构的李群结构
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MIYAZAKI Naoya其他文献

MIYAZAKI Naoya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MIYAZAKI Naoya', 18)}}的其他基金

Research of non-commutative geometry, singular point, and geometric asymptotics
非交换几何、奇点、几何渐进研究
  • 批准号:
    22540095
  • 财政年份:
    2010
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

低维超对称场论中指数定理,超对称破缺和反常问题
  • 批准号:
    19075030
  • 批准年份:
    1990
  • 资助金额:
    1.5 万元
  • 项目类别:
    面上项目

相似海外基金

ドメインウォールフェルミオンで理解する指数定理
使用域壁费米子理解指数定理
  • 批准号:
    23K22490
  • 财政年份:
    2024
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Index theorem relevant to the invariants of diffeomorphism groups
与微分同胚群不变量相关的指数定理
  • 批准号:
    20K03580
  • 财政年份:
    2020
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Index theorem of infinite-dimensional manifolds and noncommutative geometry
无限维流形指数定理和非交换几何
  • 批准号:
    18J00019
  • 财政年份:
    2018
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
The index theorem involved with foliation and diffeomorphism groups
涉及叶状群和微分同胚群的指数定理
  • 批准号:
    17K05247
  • 财政年份:
    2017
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
代数解析的手法による指数定理の研究
利用代数分析方法研究指标定理
  • 批准号:
    15J07993
  • 财政年份:
    2015
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
指数定理と余随伴軌道に関する研究
指数定理与共交轨道研究
  • 批准号:
    14J08233
  • 财政年份:
    2014
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
スペクトル流の一般化と指数定理
谱流和指数定理的推广
  • 批准号:
    14J07081
  • 财政年份:
    2014
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
指数定理を用いたスカラー曲率やその周辺に関する多様体上の解析についての研究
利用指数定理分析流形上标量曲率及其周围环境的研究
  • 批准号:
    13J01329
  • 财政年份:
    2013
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of the index theorem on foliated manifolds
叶流形指数定理的发展
  • 批准号:
    25400085
  • 财政年份:
    2013
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry of loop spaces: towards index theorem
循环空间的几何:走向索引定理
  • 批准号:
    22654011
  • 财政年份:
    2010
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了