Analysis of gradient flow equations and Lagrange equations of action integrals associated to quasiconvex functionals
与拟凸泛函相关的梯度流方程和作用积分拉格朗日方程的分析
基本信息
- 批准号:14540202
- 负责人:
- 金额:$ 2.56万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research was projected in order to investigate the following problems. 1.Constructing gradient flows associated to typical quasiconvex functionals, 2.Study in Lagrange equations of action integrals associated to typical quasiconvex functionals, 3.Discovering phenomena that show differences between convex and quasiconvex functions. During the term of the project the head investigator, Kikuchi, attended various conferences and discussed with specialists in related research areas. In the second year Workshop on spectral theory and differential operators was held at Fudan University, Shanghai, China, and the head investigator attended this conference, anounced his recent result and gathered information. Other investigators also attended various conferences held in Japan or abroad and gathered recent information. Thereby following research results are obtained. The most progresses are obtained in Problem 2. Linear application is investigated for a Lagrange equation of an action integra … More ls associated to a functional that corresponds a value of the integral of F(Du(x)) for a function u, and several results are obtained in case that F is quasiconvex and linear growth. Before obtaining this result, it is obtained for the same equation that a sequence of approximate solutions to this equation constructed by Rothe's method converges to a function and that, if it satisfies the energy conservation law, it is a weak solution in the space of BV functions. This is already established for convex cases, and now it is successfully established for quasiconvex cases. Related to Problem 3, the problem requires a different observation from that in convex cases. So far, energy inequality is obtained by the use of the convexity of the functional, and hence this method is not available in quasiconvex cases. Instead our constructiong approximate solutions elementwisely makes it possible to obtain energy inequality. This seems to be a large difference between convex and quasiconvex functions. In research related to Problem 1, although constructing a gradient flow is not complete, it is sucseeded to find an identity in the process of constructing approximate solutions, which should be a key for our destination. Less
本研究旨在调查以下问题。 1.构造与典型拟凸泛函相关的梯度流,2.研究与典型拟凸泛函相关的作用积分拉格朗日方程,3.发现凸函数和拟凸函数之间差异的现象。在项目期间,首席研究员菊池参加了各种会议并与相关研究领域的专家进行了讨论。第二年,谱理论和微分算子研讨会在中国上海复旦大学举行,首席研究员出席了这次会议,公布了他的最新成果并收集了信息。其他调查人员还参加了在日本或国外举行的各种会议并收集了最新信息。从而得到以下研究结果。最大的进展是在问题 2 中取得的。研究了与函数 u 对应的 F(Du(x)) 积分值相关的动作积分的拉格朗日方程的线性应用,并且在 F 是拟凸和线性增长的情况下获得了几个结果。在得到这个结果之前,对于同一个方程,通过Rothe方法构造的该方程的一系列近似解收敛于一个函数,并且如果它满足能量守恒定律,则它是BV函数空间中的弱解。这对于凸情况已经成立,现在对于拟凸情况也成功成立。与问题 3 相关,该问题需要与凸情况下不同的观察。到目前为止,能量不等式是通过使用泛函的凸性来获得的,因此该方法在拟凸情况下不可用。相反,我们的构造近似解使得获得能量不等式成为可能。这似乎是凸函数和拟凸函数之间的很大差异。在与问题1相关的研究中,虽然构建梯度流并不完整,但在构建近似解的过程中成功找到了恒等式,这应该是我们到达目的地的关键。较少的
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toru Nakajima: "Stability and singularities of harmonic maps into 3-spheres"Nonlinear Analysis. 54巻. 1427-1438 (2003)
Toru Nakajima:“谐波映射到 3 球体的稳定性和奇点”非线性分析第 54 卷。1427-1438 (2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoshihiro Shibata, Senjo Shimizu: "On the Lp and Schauder estimates of solutions to elastostatic interface problems"Rend. Circ. Mat. Palermo II, Suppl.. 68. 821-835 (2003)
Yoshihiro Shibata、Senjo Shimizu:“关于弹性静力界面问题解决方案的 Lp 和 Schauder 估计”Rend。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Munemitsu Hirose, Masahito Ohta: "Structure of positive radial solutions to scalar field equations with harmonic potential"J. Differential Equations. 178-2. 519-540 (2002)
Munemitsu Hirose、Masahito Ohta:“具有调和势的标量场方程的正径向解的结构”J。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Yoshihiro Shibata, Senjo Shimizu: "On a resolvent estimate of the interface problem for the stokes system in a bounded domain"Journal of Differential Equations. 191巻2号. 408-444 (2003)
Yoshihiro Shibata,Senjo Shimizu:“关于有界域中斯托克斯系统的界面问题的解析估计”微分方程杂志 191,第 2 期。408-444 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Reika Fukuizumi, Masahito Ohta: "Stability of standing waves for nonlinear Schroedinger equations with potentials"Differential Integral Equations. 16-1. 111-128 (2003)
Reika Fukuizumi、Masahito Ohta:“具有势能的非线性薛定谔方程的驻波稳定性”微分积分方程。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KIKUCHI Koji其他文献
KIKUCHI Koji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KIKUCHI Koji', 18)}}的其他基金
Tumorigenesis triggered by the misregulation of cell polarity associated with cell cycle
与细胞周期相关的细胞极性失调引发的肿瘤发生
- 批准号:
24700980 - 财政年份:2012
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study of evolution equations in the space of BV functions
BV函数空间演化方程的研究
- 批准号:
23540239 - 财政年份:2011
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Tumorigenesis triggered by the misregulation of the Wnt signaling pathways in mitosis
有丝分裂中 Wnt 信号通路的失调引发肿瘤发生
- 批准号:
22700881 - 财政年份:2010
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Study of problems in calculus of variations, differential equations, and other areas involving minimizing movements
研究变分、微分方程和其他涉及最小化运动的领域中的问题
- 批准号:
19540212 - 财政年份:2007
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of evolution equations from the aspects of the theory of minimizing movements
从最小化运动理论研究演化方程
- 批准号:
16540186 - 财政年份:2004
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research in evolution equations related to variational problems
与变分问题相关的演化方程研究
- 批准号:
12640205 - 财政年份:2000
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Neural Networks for Stationary and Evolutionary Variational Problems
用于稳态和进化变分问题的神经网络
- 批准号:
2424801 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Continuing Grant
Non-Local Variational Problems with Applications to Data Science
非局部变分问题及其在数据科学中的应用
- 批准号:
2307971 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Continuing Grant
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
Scalar curvature and geometric variational problems
标量曲率和几何变分问题
- 批准号:
2303624 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
Rigidity and boundary phenomena for geometric variational problems
几何变分问题的刚性和边界现象
- 批准号:
DE230100415 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Discovery Early Career Researcher Award
Mathematical analysis of variational problems appearing in several nonlinear Schrodinger equations
几个非线性薛定谔方程中出现的变分问题的数学分析
- 批准号:
23KJ0293 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Stability in Geometric Variational Problems
几何变分问题的稳定性
- 批准号:
2304432 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
Neural Networks for Stationary and Evolutionary Variational Problems
用于稳态和进化变分问题的神经网络
- 批准号:
2307273 - 财政年份:2023
- 资助金额:
$ 2.56万 - 项目类别:
Continuing Grant
Variational Problems with Singularities
奇点变分问题
- 批准号:
RGPIN-2019-05987 - 财政年份:2022
- 资助金额:
$ 2.56万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Existence, regularity, uniqueness and stability in anisotropic geometric variational problems
职业:各向异性几何变分问题的存在性、规律性、唯一性和稳定性
- 批准号:
2143124 - 财政年份:2022
- 资助金额:
$ 2.56万 - 项目类别:
Continuing Grant














{{item.name}}会员




