Research in evolution equations related to variational problems

与变分问题相关的演化方程研究

基本信息

  • 批准号:
    12640205
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2001
  • 项目状态:
    已结题

项目摘要

This research was projected in order to investigate the following problems. 1. Constructing gradient flows for various variational problems in, for example, nonlinear elasticity, 2. Bifurcation phenomena for gradient flow equations, 3. Hyperbolic equations related to deformation of elasticity and to area functional, 4. Application of the method of discrete Morse semiflow to the theory of Schrodinger equations, 5. Relation between blowup solutions and the method of discrete Morse semiflow. In the first year of this project World Congress of Nonlinear Analysts which is held once in each four years was held and hence the head investigator, Kikuchi, and another investigator, Ohta, attended this congress and gathered some recent information related to this project. In the second year Czechoslovak International Conference on Differential Equations and Their Applications was held and the head investigator attended this conference, anounced his recent result and gathered information. Besides e … More ach investigators attended various conferences held in Japan or abroad, announced each results and gattered recent information. Thereby following research results have been obtained. The most progresses are obtained in problems 1 and 3. The result related to 1 is that a gradient flow can be consructed when a quasiconvex functional satisfies some coersiveness condition. Furthermore, though the form of equation is restrictive, it turns out that a gradient flow for some quasiconvex functional can be constructed even if it does not satisfy such a coersiveness condition. The result related to 3 is that Dirichle condition for the equation of motion of vibrating membrane should be weaker than the usual weak formulation (that the trace vanishes). This result is obtined by applying a result in direct variational method to the theory of evolution equations, what is the most feature of this research project. Some facts related to Problem 4 are also obtained. It is confident that some new theories related to 2 and 5 will also be developed. But by now frames of these works have not yet been obtained. It should be expected in the future. Less
本研究旨在探讨以下问题。1. 构造各种变分问题的梯度流,例如非线性弹性,2。3.梯度流动方程的分岔现象。与弹性变形和面积泛函有关的双曲方程;离散Morse半流方法在薛定谔方程理论中的应用,5。爆破解与离散莫尔斯半流方法的关系。在该项目的第一年,每四年举行一次的世界非线性分析学家大会举行了,因此首席研究员菊池和另一位研究员Ohta参加了这次大会,并收集了与该项目有关的一些最新信息。第二年召开了捷克斯洛伐克国际微分方程及其应用会议,首席研究员出席了会议,宣布了他的最新成果并收集了资料。此外,更多的研究人员参加了在日本或国外举行的各种会议,公布了每个结果并收集了最新信息。从而得到以下研究结果。在问题1和问题3中取得了最大的进展。与1相关的结果是,当拟凸泛函满足某些强制条件时,可以构造梯度流。此外,尽管方程的形式是有限制的,但对于某些拟凸泛函,即使不满足强制条件,也可以构造出梯度流。与3相关的结果是振动膜运动方程的Dirichle条件应该比通常的弱公式(即迹消失)弱。该结果是将直接变分法的结果应用于进化方程理论,这是本研究项目的最大特点。与问题4相关的一些事实也得到了。相信与2和5相关的一些新理论也会发展出来。但到目前为止,这些作品的框架还没有得到。这应该是未来的预期。少

项目成果

期刊论文数量(39)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hideo Kubo and Masahito Ohta: "Global existence and blowup of the classical solutions to systems of semilinear wave equations in three space dimensions"Rend. Istit. Mat. Univ. Trieste. 31. 145-168 (2000)
Hideo Kubo 和 Masahito Ohta:“三维空间中半线性波动方程组经典解的全局存在和爆炸”Rend。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Akira Hoshiga: "The lifespan of solutions to quasilinear hyperbolic systems in two space dimensions"Nonlinear Analysis. 42. 543-560 (2000)
Akira Hoshiga:“二维空间中拟线性双曲系统解的寿命”非线性分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hideo Kubo,Masahito Ohta: "Small deta blowup for systems of semilinear wave equations with different propagation speeds in three space dimensions"J.Differential Equations. 163巻. 475-492 (2000)
Hideo Kubo,Masahito Ohta:“三个空间维度中具有不同传播速度的半线性波动方程组的小数据爆炸”J.Differential Equations 163. 475-492 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hideo Kubo,Masahito Ohta: "Global existence and blowup of the classical solutions to systems of semilinear wave equations in three space dimensions"Rend.Istit.Mat.Univ.Trieste. 31巻. 145-168 (2000)
Hideo Kubo、Masahito Ohta:“三个空间维度中半线性波动方程组的经典解的全局存在和爆炸”Rend.Istit.Mat.Univ.Trieste 31. 145-168 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Akira Hoshiga, Hideo Kubo: "Global small amplitude solutions of nonlinear hyperbolic systems with a critical exponent under the null condition"SIAM J. Math. Anal.. 31巻. 486-513 (2000)
Akira Hoshiga,Hideo Kubo:“零条件下具有临界指数的非线性双曲系统的全局小振幅解”SIAM J. Math. 31. 486-513 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KIKUCHI Koji其他文献

KIKUCHI Koji的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KIKUCHI Koji', 18)}}的其他基金

Tumorigenesis triggered by the misregulation of cell polarity associated with cell cycle
与细胞周期相关的细胞极性失调引发的肿瘤发生
  • 批准号:
    24700980
  • 财政年份:
    2012
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study of evolution equations in the space of BV functions
BV函数空间演化方程的研究
  • 批准号:
    23540239
  • 财政年份:
    2011
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tumorigenesis triggered by the misregulation of the Wnt signaling pathways in mitosis
有丝分裂中 Wnt 信号通路的失调引发肿瘤发生
  • 批准号:
    22700881
  • 财政年份:
    2010
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study of problems in calculus of variations, differential equations, and other areas involving minimizing movements
研究变分、微分方程和其他涉及最小化运动的领域中的问题
  • 批准号:
    19540212
  • 财政年份:
    2007
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of evolution equations from the aspects of the theory of minimizing movements
从最小化运动理论研究演化方程
  • 批准号:
    16540186
  • 财政年份:
    2004
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of gradient flow equations and Lagrange equations of action integrals associated to quasiconvex functionals
与拟凸泛函相关的梯度流方程和作用积分拉格朗日方程的分析
  • 批准号:
    14540202
  • 财政年份:
    2002
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
  • 批准号:
    23K03165
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
  • 批准号:
    2247027
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
  • 批准号:
    2307097
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
  • 批准号:
    2318032
  • 财政年份:
    2023
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Continuing Grant
Nonlinear partial differential equations in heterogeneous frameworks
异构框架中的非线性偏微分方程
  • 批准号:
    RGPIN-2017-04313
  • 财政年份:
    2022
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Discovery Grants Program - Individual
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
  • 批准号:
    2206675
  • 财政年份:
    2022
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Continuing Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219384
  • 财政年份:
    2022
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Regularity Versus Singularity Formation in Nonlinear Partial Differential Equations
非线性偏微分方程中的正则性与奇异性形成
  • 批准号:
    2154219
  • 财政年份:
    2022
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Standard Grant
Nonlinear Partial Differential Equations
非线性偏微分方程
  • 批准号:
    CRC-2019-00415
  • 财政年份:
    2022
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Canada Research Chairs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了