Recognition Using a Multi-Channel Vision System and Its Application

多通道视觉系统识别及其应用

基本信息

项目摘要

We have developed a technique for multi-channel vision system and its application to vision problems. The multi-channel vision system has more than three channels in the visible range of 400-700 nm, different from the fixed system with three channels of RGB. This system is useful for solving several vision problems. First, it improves color resolution of the camera system. Second, the system makes it easy to estimate spectral functions such as spectral-energy distribution of a light source and spectral reflectance of an object surface. The basic system of multi-channel imaging consists of narrowband filters, a monochrome digital camera, and a personal computer.In this research, we first developed systems for multi-channel imaging and algorithms for estimating the spectral information. Next, we developed a system for predicting three-dimensional reflection properties of an object. Moreover, the multi-channel vision system was applied to the following practical problems.(1) We considered an effective method for identifying objects in a natural scene and a method for classifying object materials on a raw circuit board.(2) A method was developed for classifying fluorescent scene illuminant by using a vision system with narrow band filtration. Most fluorescent illuminant spectra can be classified into three groups.(3) A method was devised a method for modeling human skin coloring with foundation makeup and estimating the surface-spectral reflectance by using the Kubelka-Munk theory.(4) We proposed an approach to digital archives of art paintings by using new techniques of computer vision and graphics. The process of digital archiving is decomposed into two stages of image acquisition and image rendering.(5) A method was developed for estimating an omnidirectional distribution of the scene illuminant spectral-power distribution from images taken by a camera aimed at a mirrored ball.
我们开发了一种多通道视觉系统技术及其在视觉问题中的应用。多通道视觉系统在400-700 nm可见范围内具有3个以上通道,不同于固定的RGB 3通道系统。这个系统对解决几个视觉问题很有用。首先,它提高了相机系统的色彩分辨率。其次,该系统可以方便地估计光谱函数,如光源的光谱能量分布和物体表面的光谱反射率。多通道成像的基本系统由窄带滤光片、单色数码相机和个人计算机组成。在这项研究中,我们首先开发了多通道成像系统和估计光谱信息的算法。接下来,我们开发了一个预测物体三维反射特性的系统。此外,将多通道视觉系统应用于以下实际问题。(1)我们考虑了一种自然场景中物体识别的有效方法和一种原始电路板上物体材料分类的方法。(2)提出了一种利用窄带滤波视觉系统对荧光场景光源进行分类的方法。大多数荧光光源光谱可分为三类。(3)设计了一种基于Kubelka-Munk理论的人体皮肤着色建模和表面光谱反射率估算方法。(4)提出了一种利用计算机视觉和图形学新技术实现艺术绘画数字档案的方法。将数字存档过程分解为图像采集和图像绘制两个阶段。(5)提出了一种利用相机对准镜像球拍摄的图像估计场景光源光谱功率全向分布的方法。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Approach to Digital Archiving of Art Paintings
艺术绘画数字化存档的方法
Omnidirectional Scene Illuminant Estimation Using A Mirrored Ball
使用镜像球进行全向场景光源估计
Spectral Estimation of Made-up Skin Color under Various Conditions
各种条件下化妆肤色的光谱估计
A Spectral Imaging Method for Classifying Fluorescent Scene Illuminant.
一种对荧光场景光源进行分类的光谱成像方法。
A Technique for Multi-band Imaging and Its Application to Vision (in Japanese)
多波段成像技术及其在视觉中的应用(日语)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TOMINAGA S.其他文献

TOMINAGA S.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TOMINAGA S.', 18)}}的其他基金

Discrimination of objects Based on Surface Reflectance Characteristics
基于表面反射特性的物体判别
  • 批准号:
    02680034
  • 财政年份:
    1990
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Enabling profitable digital advertising for British SMEs with AI-powered multichannel ads brokerage service
通过人工智能驱动的多渠道广告经纪服务,为英国中小企业实现盈利的数字广告
  • 批准号:
    10070962
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Collaborative R&D
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
X-AudioPD: USB Power Delivery Speakers for Multichannel Audio
X-AudioPD:用于多通道音频的 USB 供电扬声器
  • 批准号:
    10076223
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Launchpad
Live spike sorting for multichannel and high-channel recordings
针对多通道和高通道录音的实时尖峰排序
  • 批准号:
    10759767
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
MRI: Track 1 Acquisition of High-Resolution Multichannel Electrical Resistivity Imaging System for Sub-Soil Characterization
MRI:第 1 轨采集高分辨率多通道电阻率成像系统,用于地下土壤表征
  • 批准号:
    2320057
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Standard Grant
CAREER: A Multichannel Convolutional Neural Network Framework for Prediction of Damage Nucleation Sites in Microstructure
职业:用于预测微观结构中损伤成核位点的多通道卷积神经网络框架
  • 批准号:
    2341922
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Standard Grant
Multichannel Surface Electromyography Techniques and Myoelectric Control
多通道表面肌电技术和肌电控制
  • 批准号:
    571588-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.18万
  • 项目类别:
    University Undergraduate Student Research Awards
Fast Multichannel Magneto-thermal Genetics
快速多通道磁热遗传学
  • 批准号:
    10401691
  • 财政年份:
    2022
  • 资助金额:
    $ 2.18万
  • 项目类别:
Non-cryogenic Fieldable Interleaved Magnetoencephalography and Magnetic Resonance Imaging based on Multichannel Atomic Magnetometers
基于多通道原子磁强计的非低温现场交错脑磁图和磁共振成像
  • 批准号:
    10596209
  • 财政年份:
    2022
  • 资助金额:
    $ 2.18万
  • 项目类别:
SMART-5G: Secure Multichannel Automated operRations Through 5G Networks
SMART-5G:通过 5G 网络实现安全的多通道自动化操作
  • 批准号:
    49100422C0024
  • 财政年份:
    2022
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Contract
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了