複素多様体の研究-Calabi-Yau 3 foldsの素Mirror変換

复流形的研究 - Calabi-Yau 3 倍的素镜变换

基本信息

  • 批准号:
    06221201
  • 负责人:
  • 金额:
    $ 0.64万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 无数据
  • 项目状态:
    已结题

项目摘要

3次元の3次超曲面と位相同型な3次元Moishezon多様体がC^3_1正のもとでの分類。特異点を持つ3次超曲面のなかにsmall resolution(すなわち余次元2の例外集合しか持たない特異点解消)を持つものがある。これらをまとめて3次の3次元多様体(cubic 3-fold)と呼ぶ。(1)cubic 3-foldと位相同型であるがcubic 3-foldでないものがあるが全て具体的に記述できる。(2)b_2=1のcubic 3-foldに対しては0【less than or equal】b_3【less than or equal】10,(b_3:even)となる。特に特異点を持たない3次超曲面はb_2=1,b_3=10。(3)b_2=1,2【less than or equal】b_3【less than or equal】10,C^3_1【greater than or equal】1またはb_2=1,b_3=0の条件のもとでcubic 3-foldと位相同型となるMoishezon3-foldはcubic 3-foldまたは(1)の3-foldと同型。cubic-3-folds(1^5理論)のb_2,b_3は次のようになる。b_2 b_31 10,8,6,4,2,02 4,2,03 2,04【less than or equal】b_2【less than or eqCalabi-Yau 3-fold Xをtarget spaceとしたN=2 supersymetric nonlinear sigma modelはmirror変換によってそのMirror partnerYの幾何をも記述する。mirror変換によって同型H^<11>(X)【similar or equal】H^<21>(Y),H^<11>(Y)【similar or equal】H^<21>(X)が引き起こされる。Eguchiらによれば、同一のnonlinear sigma modelはh^<11>(X^1)=h^<11>(X^1)+k,h^<21>(X^1)=h^<21>(X^1)-kとなる中間的なpartnerX^1を持つと予想される。cubi3-foldsで言えば(b_2,b_3)=(1,6)→(2,4)→(3,2)→(4,0)がその中間的partnerを実現していると考えられる。Calabi-Yau 3-foldsでも同様のことがあるが、これを繰り返してMirrorにまで行き着くかはまだ確認されていない。
3-D hypersurfaces of degree 3 are of the same type as 3-D Moishezon polyhedrons. Special points are held in the small resolution of the cubic hypersurface (except for the set of residual dimensions 2). 3-fold cubical 3-fold. (1) Cubic 3-fold (2)b_2=1のcubic 3-foldに対しては0【less than or equal】b_3【less than or equal】10,(b_3:even)となる。Special special points are maintained on cubic hypersurfaces b_2= 1, b_3 =10. (3)b_2=1,2 [less than or equal] b_3 [less than or equal] 10,C^3_1 [greater than or equal] 1 b_2=1,b_3=0 cubic 3-fold (1) 3-fold Cubic-3-folds(1^5 theory) b_2, b_3 are reversed. b_2 b_31 10,8,6,4,2,02 4,2,03 2,04 [less than or equal] b_2 [less than or eqCalabi-Yau 3-fold X target space N=2 supersymetric nonlinear sigma model mirror H ^(Y), H^<11>(X), H ^(Y), H^<21>(Y),H ^(Y, H ^(Y),H^ (Y),H <11>^ (X), H^ (Y, H ^(Y), H ^(Y), H ^(Y, H ^(Y), H^ (Y, H <21>^ Eguchi, the same nonlinear sigma model h^<11>(X^1)=h^ (<11>X^1)+k,h^<21>(X^1)=h^ (<21>X^1)-k middle partnerX^1 cubi3-folds (b_2,b_3)=(1,6)→(2,4)→(3,2)→(4,0) middle partner. Calabi-Yau 3-folds are identical to each other.

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Iku Nakamura: "Moishezon-Fano three folds of index three" Jour.Faculty of Science,University of Tokyo. 40. 429-449 (1993)
Iku Nakamura:“Moishezon-Fano 三折索引三”Jour.Faculty of Science,东京大学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Iku Nakamura: "Moishezon Fourfolds homeonorphic to Q^4_C" Osaka Jour.Mathematics. 31. 1-43 (1994)
Iku Nakamura:“Moishezon Fourfolds homeonorphic to Q^4_C”Osaka Jour.Mathematics。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

中村 郁其他文献

Stable mapping class groups of 4-manifolds with boundary
具有边界的 4 流形的稳定映射类组
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    酒井泰弘;八頭彰久;中村 郁;O.Saeki
  • 通讯作者:
    O.Saeki
モジュライ理論と構造層の順像 $\pi_*(O_X)$
模理论和结构层正像$pi_*(O_X)$
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    中島慶悟;大岡龍三;菊本英紀;金 珍虎 ,阿部 雅彦,遠藤 基,藤原 耕輔,大兼 幹彦,安藤 康夫;大山幸希;中村 郁
  • 通讯作者:
    中村 郁
On moduli of stable quasi abelian varieties
关于稳定拟阿贝尔簇的模
  • DOI:
  • 发表时间:
    1975
  • 期刊:
  • 影响因子:
    0
  • 作者:
    中村 郁
  • 通讯作者:
    中村 郁
佐武コンパクト化 --- その誕生と発展
萨布紧凑化——它的诞生与发展
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Yamamura;Y. Sato;S. Kanazawa;M. Gendry;and T. Saiki;戸田裕之;中村 郁
  • 通讯作者:
    中村 郁
Title Acceleration of composite order bilinear pairing on graphicshardware
标题 图形硬件上复合阶双线性配对的加速
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    中村 郁
  • 通讯作者:
    中村 郁

中村 郁的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('中村 郁', 18)}}的其他基金

Degeneration of abelian varieties and compactification of moduli
阿贝尔簇的退化和模的紧化
  • 批准号:
    22K03261
  • 财政年份:
    2022
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
アーベル多様体のモジュライの大域的研究
阿贝尔簇模的全局研究
  • 批准号:
    23244001
  • 财政年份:
    2011
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
非可換レベル構造と志村多様体の整数環上のモデル
Shimura流形整数环上的非交换能级结构及模型
  • 批准号:
    19654001
  • 财政年份:
    2007
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
モジュライのコンパクト化と閉軌道空間
紧模和闭轨道空间
  • 批准号:
    11874001
  • 财政年份:
    1999
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
カラビヤウ多様体,マッケイ対応と単純特異点
卡拉比流形、麦凯对应和简单奇点
  • 批准号:
    08211201
  • 财政年份:
    1996
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
複素多様体の研究
复杂流形的研究
  • 批准号:
    04640002
  • 财政年份:
    1992
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
複素多様体の研究-特に3次元ファノ多様体の大域的変形
复杂流形的研究 - 特别是 3 维 Fano 流形的全局变形
  • 批准号:
    63540003
  • 财政年份:
    1988
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
非ケーラー的複素多様体の研究
非凯勒复流形的研究
  • 批准号:
    61540003
  • 财政年份:
    1986
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
VII型複素曲面の分類とある種の特異点の双対性及びティッツビルディングと退化多様体
VII 型复杂曲面的分类、某些奇点的对偶性、ttbuilding 和简并流形
  • 批准号:
    X00210----574001
  • 财政年份:
    1980
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
VII型解析的曲面の分類及び代数曲線偏極アーベル多様体のモジュライについて
代数曲线的极化阿贝尔簇的 VII 型解析面和模的分类
  • 批准号:
    X00210----474001
  • 财政年份:
    1979
  • 资助金额:
    $ 0.64万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了