モジュライのコンパクト化と閉軌道空間

紧模和闭轨道空间

基本信息

  • 批准号:
    11874001
  • 负责人:
  • 金额:
    $ 1.34万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Exploratory Research
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2001
  • 项目状态:
    已结题

项目摘要

Abel多様体のモジュライの新しいコンパクト化が構成できた。これについて論文「A new compactification of the moduli of abelian varieties over Z[ζN,1/N]」を完成し投稿中である。Inv.Math.(1999)の中ではStabilityの立場からコンパクト化(Fine moduli)を構成したので、Abel多様体の極限としては構造層がべき零元を持つこともあった。そこで今回はStabilityを犠牲にして、その代わり構造層がべき零元を持たないものをとった場合にも、モジュライのコンパクト化が可能かどうかを考察した。その結果、Abel多様体の極限としては構造層がべき零元を持たないもののみをとっても、モジュライとしていくぶん悪くなるがやはり、モジュライのコンパクト化が構成できることが証明できた。しかしStabilityを犠牲にしたので、退化Abel多様体のはもはや閉軌道を持つとは限らない。一方、Hilbert shcemeの射影的な部分多様体Zで、軌道空間X(semi-stable)//Gに有限ファイバー、かつ全射されるもが存在し、さらに軌道空間X(semi-stable)//GはZのファイバーの粗なモジュライとなる場合は一般論により、Zをモジュライとするようなモジュライ函手Mを一般的に構成できる。Stabilityによるモジュライ空間SQ_{g,K}はこのように構成されている。
Abel's multi-faceted body is a new one.これについて's paper "A new compactification of the moduli of abelian varieties over Z[ζN,1/N]" has been completed and is being submitted. Inv.Math.(1999) の中ではStabilityの Position からコンパクト化(Fine moduli)をConstitutionしたので、Abel MultibodyのLimitとしてはStructural LayerがべきZero Yuanをholdつこともあった.そこで下注ないものをとったoccasionにも、モジュライのコンパクト化がpossibleかどうかをinvestigationした.そのresult, Abel Polybody のlimit としてはConstruction Layer がべき Zero Yuan をhold たないもののみをとっても, モジュライとしていくぶん悪くなるがやはり、モジュライのコンパクト化が constitutes できることがproves できた.しかしStabilityを犠生にしたので、Degenerate Abel multi-body のはもはや Closed orbit をhold つとはlimit らない. Yifang, Hilbert shcemeのprojectionなpartial polybody Zで、orbital space mi-stable)//GはZのファイバーの thick なモジュライとなるoccasion is normal On により, ZをモジュライとするようなモジュライHanded MをGeneral に constitutes できる. Stabilityによるモジュライspace SQ_{g,K}はこのように constitutesされている.

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Iku Nakamura: "Hilbert schemes of abelian group orbits"In press in Jour.Alg.Geom..
Iku Nakamura:“阿贝尔群轨道的希尔伯特方案”在 Jour.Alg.Geom 上发表。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
I.Nakamura: "Stability of degenerate abelian varieties"Invent.Math.. 136. 659-715 (1999)
I.Nakamura:“退化阿贝尔簇的稳定性”Invent.Math.. 136. 659-715 (1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Iku Nakamura: "On Mumford's construction of degenerating abelian varieties"Tohoku J.Math.. 51. 399-420 (1999)
Iku Nakamura:“论芒福德退化阿贝尔簇的构造”Tohoku J.Math.. 51. 399-420 (1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Iku Nakamura: "Hilbert Schemes of G-Orbits in Dimension Three"Asian J.Math.. 4. 1-20 (2000)
Iku Nakamura:“第三维 G 轨道的希尔伯特方案”Asian J.Math.. 4. 1-20 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Iku Nakamura: "平面3次曲線-HesseからMumfordへ"数学(日本数学科会雑誌). 53. 241-258 (2001)
Iku Nakamura:“平面三次曲线 - 从 Hesse 到 Mumford”数学(日本数学会杂志)53. 241-258 (2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

中村 郁其他文献

Stable mapping class groups of 4-manifolds with boundary
具有边界的 4 流形的稳定映射类组
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    酒井泰弘;八頭彰久;中村 郁;O.Saeki
  • 通讯作者:
    O.Saeki
モジュライ理論と構造層の順像 $\pi_*(O_X)$
模理论和结构层正像$pi_*(O_X)$
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    中島慶悟;大岡龍三;菊本英紀;金 珍虎 ,阿部 雅彦,遠藤 基,藤原 耕輔,大兼 幹彦,安藤 康夫;大山幸希;中村 郁
  • 通讯作者:
    中村 郁
On moduli of stable quasi abelian varieties
关于稳定拟阿贝尔簇的模
  • DOI:
  • 发表时间:
    1975
  • 期刊:
  • 影响因子:
    0
  • 作者:
    中村 郁
  • 通讯作者:
    中村 郁
Title Acceleration of composite order bilinear pairing on graphicshardware
标题 图形硬件上复合阶双线性配对的加速
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    中村 郁
  • 通讯作者:
    中村 郁
佐武コンパクト化 --- その誕生と発展
萨布紧凑化——它的诞生与发展
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Yamamura;Y. Sato;S. Kanazawa;M. Gendry;and T. Saiki;戸田裕之;中村 郁
  • 通讯作者:
    中村 郁

中村 郁的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('中村 郁', 18)}}的其他基金

Degeneration of abelian varieties and compactification of moduli
阿贝尔簇的退化和模的紧化
  • 批准号:
    22K03261
  • 财政年份:
    2022
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
アーベル多様体のモジュライの大域的研究
阿贝尔簇模的全局研究
  • 批准号:
    23244001
  • 财政年份:
    2011
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
非可換レベル構造と志村多様体の整数環上のモデル
Shimura流形整数环上的非交换能级结构及模型
  • 批准号:
    19654001
  • 财政年份:
    2007
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
カラビヤウ多様体,マッケイ対応と単純特異点
卡拉比流形、麦凯对应和简单奇点
  • 批准号:
    08211201
  • 财政年份:
    1996
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
複素多様体の研究-Calabi-Yau 3 foldsの素Mirror変換
复流形的研究 - Calabi-Yau 3 倍的素镜变换
  • 批准号:
    06221201
  • 财政年份:
    1994
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
複素多様体の研究
复杂流形的研究
  • 批准号:
    04640002
  • 财政年份:
    1992
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
複素多様体の研究-特に3次元ファノ多様体の大域的変形
复杂流形的研究 - 特别是 3 维 Fano 流形的全局变形
  • 批准号:
    63540003
  • 财政年份:
    1988
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
非ケーラー的複素多様体の研究
非凯勒复流形的研究
  • 批准号:
    61540003
  • 财政年份:
    1986
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
VII型複素曲面の分類とある種の特異点の双対性及びティッツビルディングと退化多様体
VII 型复杂曲面的分类、某些奇点的对偶性、ttbuilding 和简并流形
  • 批准号:
    X00210----574001
  • 财政年份:
    1980
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
VII型解析的曲面の分類及び代数曲線偏極アーベル多様体のモジュライについて
代数曲线的极化阿贝尔簇的 VII 型解析面和模的分类
  • 批准号:
    X00210----474001
  • 财政年份:
    1979
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

整p進ホッジ理論と関連するモジュライ空間の研究
p进Hodge理论相关模空间的研究
  • 批准号:
    24K16887
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
接続のモジュライ理論を用いたパンルヴェ方程式の理論の拡張
使用连接模理论扩展 Painlevé 方程理论
  • 批准号:
    24K06674
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
正則アノマリー方程式とモジュライ空間の幾何学
正则异常方程与模空间几何
  • 批准号:
    24K06743
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
表現のモジュライとその周辺(5)
表达模数及其周围环境(5)
  • 批准号:
    24K06686
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
周期から得られるモジュライ空間の力学系に関する研究
周期模空间动力系统研究
  • 批准号:
    24K06751
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非アルキメデス的手法による超ケーラー多様体の数論とモジュライ
使用非阿基米德方法的超凯勒流形的数论和模
  • 批准号:
    23K20786
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
基本群のモジュライ空間の位相構造について
基本群模空间的拓扑结构
  • 批准号:
    24K16896
  • 财政年份:
    2024
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
混標数モジュライ空間上の久賀・佐武構成とその応用
混合特征模空间的Kuga-Satake构造及其应用
  • 批准号:
    22KJ1780
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Analysis of singularities of extremal Riemann surfaces and Klein surfaces in moduli spaces
模空间中极值黎曼曲面和克莱因曲面的奇异性分析
  • 批准号:
    23K03138
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
  • 批准号:
    23K12949
  • 财政年份:
    2023
  • 资助金额:
    $ 1.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了