Lasting Learning in Physics by Constructive Retrieval
通过建设性检索实现物理学的持久学习
基本信息
- 批准号:495697660
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Units
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In physics instruction, students should understand the content so that they can use their knowledge to solve new problems (transfer). In addition, they should remember this knowledge for longer periods (retention). Ideally, teachers should foster the attainment of both goals (transfer and retention) simultaneously to prepare for future learning (e.g., to make conceptual knowledge about the connection between force and motion in linear motion usable for later learning about rotational motion). Despite the relevance of addressing the two goals simultaneously, their attainment is usually investiga¬ted in separate research fields. For example, knowledge consolidation (retention) is studied in research on retrieval practice and learning for understanding and transfer is analyzed in research on generative learning. In this project, we combine retrieval practice and generative learning (here: focus on self-explanation and on example comparison) in physics instruction to test whether we can thereby foster lasting learning outcomes (i.e., delay of eight weeks) with respect to factual retention, transfer, and preparation for future learning. More specifically, we test the assumption that just the combination of both retrieval demands and prompting generative learning activities—also called constructive retrieval—leads to lasting learning outcomes. We address the following main research questions: (A) Can lasting learning outcomes be fostered by combining retrieval demands and self-explanation prompting? Is this effect mediated by both mental effort and self-explanation quality? (Exp. 1). (B) Do students make better use of learning tasks that demand retrieval (i.e., investing mental effort) and of learning tasks that prompt self-explanations (i.e., providing good self-explanations) when learners are informed about the rationale of these learning tasks (principle of informed training)? Does this better use mediate better lasting learning outcomes? (Exp. 2). (C) Are the effects of combining retrieval and generative learning activities on lasting learning outcomes moderated by the complexity of the prompted generative learning activity (prompting self-explanation vs. prompting example comparison; the latter being more complex for students)? (Exp. 3). (D) Are the effects of our instructional procedures (i.e., retrieval demands, self-explanation prompting, example comparison prompting, and informed training) moderated by learners’ motivational goal orientations? (Exp. 1-3). In addition, we replicate an experiment of a partner project within the present Research Unit (Exp. 4). We conduct our field experiments in mechanics instruction at "Gymnasiums" (11th grade), teaching important school-relevant knowledge. Overall, we aim to gain insights about how to optimize learning by combining instructional procedures from different research fields (i.e., retrieval practice and generative learning).
在物理教学中,学生应该理解内容,以便他们能够运用自己的知识解决新问题(迁移)。此外,他们应该记住这些知识更长的时间(保留)。理想情况下,教师应同时促进实现这两个目标(迁移和保留),为未来的学习做准备(例如,使关于线性运动中的力和运动之间的联系的概念性知识可用于以后关于旋转运动的学习)。尽管同时解决这两个目标的相关性,但它们的实现通常在不同的研究领域中进行。例如,在检索实践研究中研究了知识巩固(保持),在生成性学习研究中分析了为理解和迁移而学习。在这个项目中,我们在物理教学中结合联合收割机检索实践和生成性学习(这里:专注于自我解释和示例比较),以测试我们是否可以由此促进持久的学习成果(即,延迟八周),以实际保留,转移和准备未来的学习。更具体地说,我们测试的假设,只是结合检索需求和促进生成性学习活动,也称为建设性检索,导致持久的学习成果。我们解决了以下主要研究问题:(A)持久的学习成果可以通过结合检索需求和自我解释的提示?这种效应是否同时受到心理努力和自我解释质量的影响?(实验)1)。(B)学生是否更好地利用了需要检索的学习任务(即,投入精神努力)和促使自我解释的学习任务(即,提供良好的自我解释),当学习者被告知这些学习任务的基本原理(知情培训原则)?这是否更好地使用调解更好的持久的学习成果?(实验)2)。(C)检索和生成性学习活动相结合对持久学习成果的影响是否受到提示生成性学习活动的复杂性(提示自我解释与提示示例比较;后者对学生来说更复杂)的调节?(实验)3)。(D)是我们的教学程序的效果(即,提取要求、自我解释提示、样例比较提示和知情训练)对学习者动机目标取向的影响?(实验)第1-3段)。此外,我们复制了一个实验的合作伙伴项目在本研究单位(实验。4)。我们在“体育馆”(11年级)进行力学教学的实地实验,教授重要的学校相关知识。总的来说,我们的目标是通过结合来自不同研究领域的教学程序(即,检索实践和生成性学习)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professorin Dr. Claudia von Aufschnaiter其他文献
Professorin Dr. Claudia von Aufschnaiter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professorin Dr. Claudia von Aufschnaiter', 18)}}的其他基金
Processes of students development of scientific practices
学生发展科学实践的过程
- 批准号:
317314720 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Grants
Prozessbasierte Untersuchungen des Zusammenhanges von epistemischen Argumentationen und konzeptueller Entwicklung in der Physik
基于过程的物理学认知论证与概念发展之间联系的研究
- 批准号:
5420067 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Research Grants
Process based analyses of differently advanced physics learners´conceptual development in the domain of electrostatics and -dynamics
对不同高级物理学习者在静电学和动力学领域概念发展的基于过程的分析
- 批准号:
5313806 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Research Grants
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
具有时序处理能力的Spiking-Deep Learning(脉冲深度学习)方法研究
- 批准号:61573081
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于有向超图的大型个性化e-learning学习过程模型的自动生成与优化
- 批准号:61572533
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
E-Learning中学习者情感补偿方法的研究
- 批准号:61402392
- 批准年份:2014
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Illuminating patterns and processes of water quality in U.S. rivers using physics-guided deep learning
使用物理引导的深度学习阐明美国河流的水质模式和过程
- 批准号:
2346471 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Physics-Informed Deep Learning for Understanding Earthquake Slip Complexity
职业:基于物理的深度学习用于理解地震滑动的复杂性
- 批准号:
2339996 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Intelligent Battery Management with Safe, Efficient, Fast-Adaption Reinforcement Learning and Physics-Inspired Machine Learning: From Cells to Packs
职业:具有安全、高效、快速适应的强化学习和物理启发机器学习的智能电池管理:从电池到电池组
- 批准号:
2340194 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
- 批准号:
2338555 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Symmetries and Classical Physics in Machine Learning for Science and Engineering
职业:科学与工程机器学习中的对称性和经典物理学
- 批准号:
2339682 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Enhancing the Accuracy and Interpretability of Global Flood Models with AI: Development of a Physics-Guided Deep Learning Model Considering River Network Topology
利用人工智能提高全球洪水模型的准确性和可解释性:考虑河网拓扑的物理引导深度学习模型的开发
- 批准号:
24K17353 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Physics-informed Graph Learning for Anomaly Detection in Power Systems
职业:用于电力系统异常检测的物理信息图学习
- 批准号:
2338642 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Accelerating Scientific Discovery via Deep Learning with Strong Physics Inductive Biases
职业:通过具有强物理归纳偏差的深度学习加速科学发现
- 批准号:
2338909 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant