IP4: Forecasting Phenotypes based on Management Decisions

IP4:基于管理决策预测表型

基本信息

项目摘要

Tactical management decisions that concern the day-to-day management of the cropping system like watering, fertilizing, or thinning, have a large impact on the growth of the plants and the quantity and quality of fruits for horticultural crops. In order to support decision makers like farmers, this project aims to develop AI approaches to forecast the future growth of plants based on different tactical management decisions. In this way, the AI models provide a better understanding how tactical management decisions will affect the yield of a horticultural crop. This will be done by forecasting phenotypic traits like height of plants or the quantity and size of fruits that are relevant for the decision maker. For forecasting, we will focus on deep neural networks that forecast phenotypes from sequences of consistent geometric-semantic models of plants, while taking past and planned tactical management decisions into account. Since the amount of tactical management decisions that can be made every day is very large, we also aim to develop a network that is able to propose future tactical management decisions by itself. While the focus of this project is on developing new approaches, the developed techniques have the potential to become powerful tools for agricultural decision makers.
关系到种植制度日常管理的战术管理决策,如浇水、施肥或间伐,对园艺作物的植物生长和果实的数量和质量有很大影响。为了支持像农民这样的决策者,该项目旨在开发基于不同战术管理决策的人工智能方法来预测植物的未来生长。通过这种方式,人工智能模型提供了更好的理解,战术管理决策将如何影响园艺作物的产量。这将通过预测与决策者相关的表型性状,如植株高度或水果的数量和大小来实现。对于预测,我们将专注于深度神经网络,它从一致的植物几何-语义模型序列中预测表型,同时考虑过去和计划的战术管理决策。由于每天可以做出的战术管理决策数量非常大,我们的目标也是开发一个能够独立提出未来战术管理决策的网络。虽然该项目的重点是开发新的方法,但开发的技术有可能成为农业决策者的强大工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Jürgen Gall其他文献

Professor Dr. Jürgen Gall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Jürgen Gall', 18)}}的其他基金

PERIAPT: Joint Person Detection, Re-Identification and Pose Tracking in Video
PERIAPT:视频中的联合人员检测、重新识别和姿势跟踪
  • 批准号:
    410904267
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Anticipating Human Motion and Activities (P3)
预测人体运动和活动(P3)
  • 批准号:
    332887688
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Units
Coordination Funds
协调基金
  • 批准号:
    334136668
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Units
HFVSA: Human Focused Visual Scene Understanding
HFVSA:以人为本的视觉场景理解
  • 批准号:
    229087185
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Independent Junior Research Groups
Interpretation of environments by incremental learning
通过增量学习解释环境
  • 批准号:
    200550554
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Research Units
Activity Map Completion with Dynamic Objects (P1)
使用动态对象完成活动图(P1)
  • 批准号:
    333380323
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似海外基金

MULTI-STRESS: Quantifying the impacts of multiple stressors in multiple dimensions to improve ecological forecasting
多重压力:在多个维度量化多种压力源的影响,以改进生态预测
  • 批准号:
    NE/Z000130/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
LTREB: Integrating real-time open data pipelines and forecasting to quantify ecosystem predictability at day to decadal scales
LTREB:集成实时开放数据管道和预测,以量化每日到十年尺度的生态系统可预测性
  • 批准号:
    2327030
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Solar Forecasting And Future Sustainable Power Systems
太阳能预测和未来可持续电力系统
  • 批准号:
    2908163
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
Cross-scale forecasting of Everglades wading bird dynamics
大沼泽地涉水鸟动态的跨尺度预测
  • 批准号:
    2326954
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Towards the next generation probabilistic flood forecasting system for the UK
英国下一代概率洪水预报系统
  • 批准号:
    2907694
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
SBIR Phase I: Subseasonal Forecasting and Climate Risk Analytics Combining Physics and AI
SBIR 第一阶段:结合物理和人工智能的次季节预报和气候风险分析
  • 批准号:
    2335210
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Water IMPACT: Water emissions forecasting tool to Introduce the Modelling Potential of water quality Actions to reach Climate-change Targets
水影响:水排放预测工具,介绍水质建模潜力 实现气候变化目标的行动
  • 批准号:
    10103499
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Integrating and scaling seasonal climate-driven dengue forecasting
整合和扩展季节性气候驱动的登革热预测
  • 批准号:
    MR/Y004663/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Solar forecasting and future sustainable power systems
太阳能预测和未来可持续电力系统
  • 批准号:
    2905679
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
EAGER: IMPRESS-U: Modeling and Forecasting of Infection Spread in War and Post War Settings Using Epidemiological, Behavioral and Genomic Surveillance Data
EAGER:IMPRESS-U:使用流行病学、行为和基因组监测数据对战争和战后环境中的感染传播进行建模和预测
  • 批准号:
    2412914
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了