Large deviations for random matrices with varying potential and sum rules
具有不同势和求和规则的随机矩阵的较大偏差
基本信息
- 批准号:499508288
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:
- 资助国家:德国
- 起止时间:
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In this project we investigate spectral measures of large random matrices. Random matrices are used to model complex physical systems and the spectral measure is a way to describe properties of the matrix. Since the matrix is random, the spectral measure is a random object as well. However, if the matrix is large, the spectral measure is typically close to a deterministic limit measure and deviations are exponentially unlikely. We study large deviation principles, which measure how likely such a fluctuation from this limit is precisely. The novel approach of this project is to show these concentration estimates when the mechanism generating the random matrix, determined by a potential, is not fixed, but changes with its size. In this case, several limit theorems are known for the spectral measure, but very few on the scale of large deviations. There are two ways to describe a random spectral measure: by its spectral information or by a series of coefficients. It is however not easy to relate between information given in spectral form and information given in terms of the coefficients. We utilize both encodings to study how a varying potential influences the concentration of the spectral measure, which allows to prove large deviation principles in two different ways. The great benefit of two independent proofs in both descriptions is a resulting sum rule. These sum rules are important equations, which allow to translate between spectral information and the coefficients. Besides the purely probabilistic large deviation estimate, the discovery of such identities is another main goal. By varying the mechanism generating the random spectral measure, we can derive new forms of sum rules.
在这个项目中,我们研究大型随机矩阵的谱测度。随机矩阵用于模拟复杂的物理系统,谱测度是描述随机矩阵性质的一种方法。由于矩阵是随机的,所以谱测度也是随机对象。然而,如果矩阵很大,谱测度通常接近于确定性极限测度,并且偏差是指数不可能的。我们研究了大偏差原理,它精确地测量了从这个极限波动的可能性。该项目的新方法是显示这些浓度估计时,产生随机矩阵的机制,由潜在的,是不固定的,但随着其大小的变化。在这种情况下,几个极限定理是已知的谱测度,但很少在规模的大偏差。有两种方法来描述随机谱测度:通过其谱信息或通过一系列系数。然而,在以谱形式给出的信息和以系数形式给出的信息之间建立联系并不容易。我们利用这两种编码来研究变化的电位如何影响光谱测量的浓度,这允许以两种不同的方式证明大偏差原理。两种描述中两个独立证明的最大好处是一个结果求和规则。这些求和规则是重要的等式,其允许在谱信息和系数之间转换。除了纯粹的概率大偏差估计,发现这样的身份是另一个主要目标。通过改变产生随机谱测度的机制,我们可以得到新形式的求和规则。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr. Jan Nagel其他文献
Dr. Jan Nagel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dr. Jan Nagel', 18)}}的其他基金
Effective parameters of random walks on critical random graphs
临界随机图上随机游走的有效参数
- 批准号:
322862392 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Research Fellowships
相似国自然基金
保险风险模型、投资组合及相关课题研究
- 批准号:10971157
- 批准年份:2009
- 资助金额:24.0 万元
- 项目类别:面上项目
相似海外基金
SPDEQFT: Stochastic PDEs meet QFT: Large deviations, Uhlenbeck compactness, and Yang-Mills
SPDEQFT:随机 PDE 满足 QFT:大偏差、Uhlenbeck 紧致性和 Yang-Mills
- 批准号:
EP/Y028090/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Caregiver Cumulative Cortisol Mediates Deviations in Functional Connectivity in Infants: A Novel fNIRS Study
护理人员累积皮质醇介导婴儿功能连接偏差:一项新的 fNIRS 研究
- 批准号:
2884608 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Using polyneuro risk scores to understand the relationship between childhood socioeconomic disadvantage, neurobehavioral deviations, and problematic substance use
使用多神经风险评分来了解儿童社会经济劣势、神经行为偏差和有问题的物质使用之间的关系
- 批准号:
10890442 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Using polyneuro risk scores to understand the relationship between childhood socioeconomic disadvantage, neurobehavioral deviations, and problematic substance use
使用多神经风险评分来了解儿童社会经济劣势、神经行为偏差和有问题的物质使用之间的关系
- 批准号:
10570617 - 财政年份:2023
- 资助金额:
-- - 项目类别:
ランダム媒質中の確率モデル 研究課題
随机媒体中的随机模型 研究主题
- 批准号:
22K20344 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Using normative modelling to investigate how individual deviations in white matter brain structure are related to longitudinal psychotic and non-psychotic outcomes in individuals at clinical high risk for psychosis
使用规范模型来研究脑白质结构的个体偏差如何与临床精神病高风险个体的纵向精神病和非精神病结果相关
- 批准号:
471414 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fellowship Programs
Large Deviations in Large Non-equilibrium Systems
大型非平衡系统中的大偏差
- 批准号:
2243112 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Large Deviations in Large Non-equilibrium Systems
大型非平衡系统中的大偏差
- 批准号:
2153739 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Large deviations in random planar geometry
随机平面几何形状的大偏差
- 批准号:
572476-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
University Undergraduate Student Research Awards