Data-driven machine learning enhanced optimisation of vehicle crashworthiness design

数据驱动的机器学习增强了车辆耐撞性设计的优化

基本信息

项目摘要

Design of Crashworthiness is a key aspect of vehicle design. The further evolution of advanced vehicle safety and usage of lightweight structures require powerful optimization strategies. Vehicle crash simulations are computationally intensive and often surrogate models are used in place of the full vehicle model to reduce the complexity of the model and computational effort. Although these models save time and computational cost, the results are sub-optimal and in the case of physical surrogates, the overall vehicle response cannot be determined due to the reduction of the model. In this study, we utilize machine learning (ML) methods to address these issues. Reinforcement learning (RL), which is a subset of ML, is a powerful optimization tool but has rarely been utilized in vehicle design. It has the potential to learn from experience and has the potential to generate near-optimal parameters. In this study, two novel Deep convolutional generative adversarial network (DCGAN) based approaches, an RL approach based on a soft actor-critic agent (SAC), and two supervised learning neural networks (SLNN) are proposed to investigate multidimensional optimization of crashworthiness of a vehicle. The first DCGAN is used to generate synthetic data for training the first SLNN along with simulation data to improve training accuracy. The second SLNN is trained as a mathematical surrogate for continuum material models to accelerate FE simulation (with a patent of the applicant). Due to its sample efficient learning and entropy maximization capability and stability, a SAC agent-based RL framework is used to optimize the vehicle crashworthiness design. The first SLNN is then used as the environment for the proposed deep SAC agent-based RL network which optimizes the design parameters. Finally, the second DCGAN is used to estimate overall vehicle response from reduced surrogate models. The study aims to modernize and optimize the design optimization process in vehicle crashworthiness design reducing overall computational effort and improving accuracy compared to existing surrogate models.
耐撞性设计是汽车设计的一个重要方面。先进车辆安全性的进一步发展和轻量化结构的使用需要强有力的优化策略。车辆碰撞仿真计算量大,通常使用替代模型代替整车模型,以降低模型的复杂性和计算量。虽然这些模型节省了时间和计算成本,但结果不是最优的,并且在物理替代的情况下,由于模型的减少,无法确定车辆的整体响应。在本研究中,我们利用机器学习(ML)方法来解决这些问题。强化学习(RL)是机器学习的一个子集,是一种强大的优化工具,但很少用于车辆设计。它有可能从经验中学习,并有可能产生接近最优的参数。在这项研究中,提出了两种新颖的基于深度卷积生成对抗网络(DCGAN)的方法,一种基于软行为-评论代理(SAC)的强化学习方法,以及两种监督学习神经网络(SLNN)来研究车辆耐撞性的多维优化。第一个DCGAN与仿真数据一起生成用于训练第一个SLNN的合成数据,以提高训练精度。第二个SLNN被训练为连续介质材料模型的数学代理,以加速有限元模拟(申请人的专利)。基于SAC智能体的强化学习框架具有样本高效学习和熵最大化的能力和稳定性,可用于优化车辆的耐撞性设计。然后将第一个SLNN用作所提出的基于深度SAC代理的RL网络的环境,该网络优化了设计参数。最后,第二个DCGAN用于从简化的代理模型中估计整体车辆响应。与现有替代模型相比,该研究旨在实现汽车耐撞设计优化过程的现代化和优化,减少总体计算量,提高精度。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Marcus Stoffel其他文献

Professor Dr.-Ing. Marcus Stoffel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Marcus Stoffel', 18)}}的其他基金

Verfahrensentwicklung und -erprobung zur Optimierung von Knorpelersatzmaterialien
软骨替代材料优化的工艺开发和测试
  • 批准号:
    138206978
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Calibration of a gradient-enhanced damage model for viscoplastic shell structures
粘塑性壳结构梯度增强损伤模型的校准
  • 批准号:
    36372275
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
A new neural network enhanced Finite Element approach
一种新的神经网络增强有限元方法
  • 批准号:
    504279932
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
基于Cache的远程计时攻击研究
  • 批准号:
    60772082
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

N2Vision+: A robot-enabled, data-driven machine vision tool for nitrogen diagnosis of arable soils
N2Vision:一种由机器人驱动、数据驱动的机器视觉工具,用于耕地土壤的氮诊断
  • 批准号:
    10091423
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
  • 批准号:
    2236947
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
  • 批准号:
    2301173
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Advancing the Science of STEM Interest Development through Educational Gameplay with Machine Learning and Data-driven Interviews
合作研究:通过机器学习和数据驱动访谈的教育游戏推进 STEM 兴趣发展科学
  • 批准号:
    2301172
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Data-driven design of graphene oxide for environmental applications enabled by natural language processing and machine learning techniques
职业:通过自然语言处理和机器学习技术实现氧化石墨烯环境应用的数据驱动设计
  • 批准号:
    2238415
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development of Data-Collection Algorithms and Data-Driven Control Methods for Guaranteed Stabilization of Nonlinear Systems with Uncertain Equilibria and Orbits
开发数据收集算法和数据驱动控制方法,以保证具有不确定平衡和轨道的非线性系统的稳定性
  • 批准号:
    23K03913
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrating Musculoskeletal and Data-Driven Modeling to Understand the Biomechanical Sequelae of Syndesmotic Repair
整合肌肉骨骼和数据驱动建模以了解韧带联合修复的生物力学后遗症
  • 批准号:
    10751099
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Improving data-driven design using physical model-based machine learning
使用基于物理模型的机器学习改进数据驱动设计
  • 批准号:
    23K13239
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Data-Driven Scheduling of Orthopaedic Surgical Services: An End-to-End Framework with Machine Learning and Mathematical Optimization
数据驱动的骨科手术服务调度:具有机器学习和数学优化的端到端框架
  • 批准号:
    490488
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
RII Track-4: NSF: Data-driven Computational and Machine Learning Assessment of Structure-Toxicity Relationship of Micro/NanoPlastics
RII Track-4:NSF:微/纳米塑料结构-毒性关系的数据驱动计算和机器学习评估
  • 批准号:
    2229755
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了