The critical Hardy inequality and its application to partial differential equations with logarithmic singularity

临界Hardy不等式及其在对数奇异性偏微分方程中的应用

基本信息

  • 批准号:
    15K17575
  • 负责人:
  • 金额:
    $ 2.66万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
  • 财政年份:
    2015
  • 资助国家:
    日本
  • 起止时间:
    2015-04-01 至 2018-03-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On a variational problem associated with a Hardy type inequality involving a mean oscillation
关于与涉及平均振荡的 Hardy 型不等式相关的变分问题
Existence, Non-existence, and Uniqueness for a Heat Equation with Exponential Nonlinearity in $\mathbb{R}^2$
$mathbb{R}^2$ 中具有指数非线性的热方程的存在性、不存在性和唯一性
ミラノ大学(イタリア)
米兰大学(意大利)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Firenze University/Milano University(Italy)
佛罗伦萨大学/米兰大学(意大利)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
高階Hardy-Sobolevの不等式が持つ相殺効果
高阶 Hardy-Sobolev 不等式的抵消效应
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Ioku;B. Ruf;E. Terraneo;Norisuke Ioku;猪奥倫左
  • 通讯作者:
    猪奥倫左
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ioku norisuke其他文献

ioku norisuke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Quasi self-similar transformation for a semilinear heat equation and its application to the solvability
半线性热方程的拟自相似变换及其在可解性中的应用
  • 批准号:
    23K03179
  • 财政年份:
    2023
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Solvability for a nonlinear heat equation with singular initial data
具有奇异初始数据的非线性热方程的可解性
  • 批准号:
    19K14569
  • 财政年份:
    2019
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Fast Solution of the Heat Equation in Additively Manufactured Metals
增材制造金属中热方程的快速求解
  • 批准号:
    2136342
  • 财政年份:
    2018
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Studentship
作用素論を用いた制約付き熱方程式とNavier-Stokes方程式の連立系の研究
利用算子理论研究约束热方程和纳维-斯托克斯方程耦合系统
  • 批准号:
    15J01987
  • 财政年份:
    2015
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Gブラウン運動に対する確率解析と非線形熱方程式への応用
G-布朗运动的随机分析及其在非线性热方程中的应用
  • 批准号:
    12J04442
  • 财政年份:
    2012
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Geometric structure of manifold and the blow-up problem of nonlinear heat equation
流形几何结构与非线性热方程的爆炸问题
  • 批准号:
    23740128
  • 财政年份:
    2011
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The research of transformations which preserve the solutions of the heat equation and the wave equation.
保留热方程和波动方程解的变换研究。
  • 批准号:
    22540169
  • 财政年份:
    2010
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An asymptotic expansion of the fundamental solution to the heat equation and its applications
热方程基本解的渐近展开及其应用
  • 批准号:
    21540194
  • 财政年份:
    2009
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of Inverse Problems for the Heat equation Based on the Theory of Stochastic Control
基于随机控制理论的热方程反问题研究
  • 批准号:
    16540100
  • 财政年份:
    2004
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The heat equation on symmetric spaces of noncompact type
非紧型对称空间上的热方程
  • 批准号:
    170653-1998
  • 财政年份:
    2001
  • 资助金额:
    $ 2.66万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了