Deep Neural Networks for Nonlinear Multichannel Speech Enhancement

用于非线性多通道语音增强的深度神经网络

基本信息

项目摘要

In this project, we explore how the flexible nonlinear modelling capacity of deep neural networks can be employed to push the performance of multichannel speech enhancement algorithms beyond the limits imposed by traditional linear beamforming. To understand speech in noisy environments, a growing number of hearing-impaired human listeners in our aging society, as well as human-machine interfaces, rely on speech enhancement algorithms. These aim to improve speech quality and intelligibility by suppressing background noise and other unwanted effects such as reverberation. In a multichannel setting, algorithms can leverage spatial information in addition to exploiting the tempo-spectral characteristics of the noisy signal. Traditionally, this has been done by concatenating a linear spatial filter, a so-called beamformer, and a possibly nonlinear and machine learning-based spectral single-channel postfilter. In contrast, statistical analyses and experimental evaluations of our preliminary work reveal that a joint spatial-spectral nonlinear filter may outperform the traditional approach if the noise is non-Gaussian. However, the estimation of the parameters of such analytical estimators has proven to be difficult in practice. Consequently, this project targets the development and analysis of robust joint spatial-spectral nonlinear filters using deep neural networks as flexible and powerful nonlinear function approximators. For this, concepts from information theory, statistical signal processing, and machine learning are combined. Upon success, this project may pave the way towards a novel class of nonlinear multichannel speech signal processing schemes and is thus of high relevance both for academia and industry.
在这个项目中,我们探索如何利用深度神经网络灵活的非线性建模能力来推动多通道语音增强算法的性能超越传统线性波束形成的限制。为了在嘈杂的环境中理解语音,老龄化社会中越来越多的听力受损的听众以及人机界面都依赖于语音增强算法。这些旨在通过抑制背景噪声和其他不良影响(例如混响)来提高语音质量和清晰度。在多通道设置中,除了利用噪声信号的时间频谱特征之外,算法还可以利用空间信息。传统上,这是通过连接线性空间滤波器(所谓的波束形成器)和可能的非线性和基于机器学习的光谱单通道后滤波器来完成的。相比之下,我们前期工作的统计分析和实验评估表明,如果噪声是非高斯的,联合空间谱非线性滤波器可能会优于传统方法。然而,这种分析估计器的参数估计在实践中被证明是困难的。因此,该项目的目标是使用深度神经网络作为灵活且强大的非线性函数逼近器来开发和分析鲁棒的联合空间频谱非线性滤波器。为此,结合了信息论、统计信号处理和机器学习的概念。一旦成功,该项目可能为新型非线性多通道语音信号处理方案铺平道路,因此对学术界和工业界都具有高度相关性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Timo Gerkmann其他文献

Professor Dr.-Ing. Timo Gerkmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Timo Gerkmann', 18)}}的其他基金

Robust noise reduction by novel means of incorporating phase processing
通过结合相位处理的新颖方法实现稳健的降噪
  • 批准号:
    247465126
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Deep neural networks
深度神经网络
  • 批准号:
    2902331
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Studentship
CAREER: Reliable and Accelerated Deep Neural Networks via Co-Design of Hardware and Algorithms
职业:通过硬件和算法的协同设计实现可靠且加速的深度神经网络
  • 批准号:
    2340516
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Property-Driven Quality Assurance of Adversarial Robustness of Deep Neural Networks
深度神经网络对抗鲁棒性的属性驱动质量保证
  • 批准号:
    23K11049
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Deep Neural Networks That Can See Shape From Images: Models, Algorithms, and Applications
职业:可以从图像中看到形状的深度神经网络:模型、算法和应用
  • 批准号:
    2239977
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
High-performance deep neural networks for medical image analysis
用于医学图像分析的高性能深度神经网络
  • 批准号:
    10723553
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Imaging Epilepsy Sources with Biophysically Constrained Deep Neural Networks
使用生物物理约束的深度神经网络对癫痫源进行成像
  • 批准号:
    10655833
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Collaborative Research: SaTC: CORE: Small: Understanding and Taming Deterministic Model Bit Flip attacks in Deep Neural Networks
协作研究:SaTC:核心:小型:理解和驯服深度神经网络中的确定性模型位翻转攻击
  • 批准号:
    2342618
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Random Matrices, Random Graphs, and Deep Neural Networks
随机矩阵、随机图和深度神经网络
  • 批准号:
    2331096
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了