New Theory and Applications with the Regularized Kappa-Distribution

正则化 Kappa 分布的新理论和应用

基本信息

项目摘要

With this project we will advance the non-equilibrium plasma theory and corresponding specific applications by employing the Regularized Kappa Distribution (RKD) that was introduced recently for a realistic treatment and interpretation of suprathermal particle populations and their implications in various astrophysical systems. This RKD allows one to overcome a series of critical limitations and deficiencies of the standard Kappa distribution (SKD) mainly determined by the diverging velocity moments, a non-extensive entropy as well as undesired contributions of unphysical superluminal particles. The new RKD concept motivates systematic explorations of its consequences in kinetic as well as fluid theory and corresponding studies of astrophysical plasma systems on small and large scales. Consequently, the main objective of the proposed project is to develop new theoretical approaches based on the RKD and to apply them to non-equilibrium multi-scale plasmas, with an emphasis on the best observed astrophysical system, i.e., the heliosphere. This objective is explicitly formulated with two scientific key questions, one of which is addressing kinetic theory and the other the fluid theory: (Q1) What are the implications of using the RKD in the kinetic theory for the properties of plasma waves and instabilities? (Q2) How can a fluid theory based on the RKD be derived and applied to nonthermal astrophysical systems? The answer to the first question will clarify, by means of analytical and numerical modelling, the consequences of using the RKD for plasma waves on small, i.e. kinetic scales. That to the second question will establish a consistent quantitative treatment of the plasma dynamics on large, i.e. fluid scales. The modelling and its assessment with data will be realized by the fulfillment of the following three tasks: (i) the development of the kinetic theory for the RKD and its application to particle populations in the solar wind plasma, (ii) the use of macroscopic moments of the RKD and appropriate source terms for mass, momentum and energy to derive MHD-like fluid equations and their application, and (iii) the validation of the kinetic and fluid results with spacecraft data. With the corresponding analytical and numerical studies we will not only deepen the understanding of the physical relevance of the RKD and its significance for astrophysical plasma systems, in particular the solar wind, but also establish, for the first time, a kinetic and a fluid description of nonthermal astrophysical plasmas that are fully consistent with each other. The validation of the theory and the modelling will be made on the basis of various spacecraft data, particularly from the recently launched NASA mission Parker Solar Probe and the forthcoming ESA mission Solar Orbiter.
通过这个项目,我们将推进非平衡等离子体理论和相应的具体应用,采用正则化卡帕分布(RKD),这是最近推出的超热粒子种群及其在各种天体物理系统中的影响的现实治疗和解释。这个RKD允许一个克服一系列的关键限制和缺陷的标准Kappa分布(SKD)主要由发散的速度矩,非广延熵以及非物理超光速粒子的不希望的贡献。新的RKD概念激发了对其在动力学和流体理论中的后果的系统探索,以及对小尺度和大尺度天体物理等离子体系统的相应研究。因此,拟议项目的主要目标是在RKD的基础上开发新的理论方法,并将其应用于非平衡多尺度等离子体,重点是观测到的最佳天体物理系统,即,日光层这一目标明确制定了两个科学的关键问题,其中之一是解决动力学理论和其他流体理论:(Q1)在动力学理论中使用RKD的等离子体波和不稳定性的性质有什么影响?(Q2)基于RKD的流体理论如何导出并应用于非热天体物理系统?第一个问题的答案将澄清,通过分析和数值模拟,使用RKD的等离子体波小,即动力学尺度的后果。这对第二个问题将建立一个一致的定量处理等离子体动力学在大,即流体尺度。建模及其数据评估将通过完成以下三项任务来实现:(i)RKD的动力学理论的发展及其在太阳风等离子体中粒子群的应用,(ii)使用RKD的宏观矩和质量、动量和能量的适当源项来导出MHD类流体方程及其应用,以及(iii)用航天器数据验证动力学和流体结果。 通过相应的分析和数值研究,我们不仅将加深对RKD的物理相关性及其对天体物理等离子体系统,特别是太阳风的意义的理解,而且还将首次建立相互完全一致的非热天体物理等离子体的动力学和流体描述。将根据各种航天器数据,特别是最近发射的美国航天局使命帕克太阳探测器和即将发射的欧空局使命太阳轨道器的数据,对理论和模型进行验证。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Privatdozent Dr. Horst Fichtner其他文献

Privatdozent Dr. Horst Fichtner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Privatdozent Dr. Horst Fichtner', 18)}}的其他基金

Turbulence Transport in Sub-Alfvenic and Subsonic Astrophysical Plasma Flows
亚芬尼和亚音速天体物理等离子体流中的湍流传输
  • 批准号:
    390744075
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Exploring the Structure of the Local Interstellar Medium with the Interstellar Boundary Explorer (IBEX)
使用星际边界探测器(IBEX)探索当地星际介质的结构
  • 批准号:
    319217929
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Cosmic Ray Anisotropy and Interstellar Spectra: Astrophysics of the Outer Heliosphere
宇宙射线各向异性和星际光谱:外日光层的天体物理学
  • 批准号:
    226390020
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Data-validated, Self-consistent Modelling of Turbulence and Particle Transport in the Heliosphere
经过数据验证、自洽的日光层湍流和粒子输运建模
  • 批准号:
    221245396
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
3D distribution of cosmic rays in the Galaxy, anisotropic diffusion, computation of the proton spectrum along the Sun's orbit, heliospheric modulation of interstellar proton spectra
银河系中宇宙射线的 3D 分布、各向异性扩散、沿太阳轨道计算质子谱、星际质子谱的日光层调制
  • 批准号:
    98076068
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
MHD and multi-species studies of astrophysical outflows
天体物理外流的 MHD 和多物种研究
  • 批准号:
    84088408
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Units
Time-dependent transport of energetic particles in the atmosphere, magnetosphere and heliosphere, reconstruction of the long-term flux heliospheric environment, atmospheric ionisation, production of neutrons and cosmogenic isotopes
大气、磁层和日光层中高能粒子随时间的传输,长期通量日光层环境的重建,大气电离,中子和宇宙同位素的产生
  • 批准号:
    5453810
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Modeling the Time-Dependent Cosmic-Ray Sun Shadowand its related Gamma-Ray and Neutrino Signatures
模拟时间相关的宇宙射线太阳阴影及其相关的伽马射线和中微子特征
  • 批准号:
    437789084
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

NewDataMetrics: Econometrics for New Data: Theory, Methods, and Applications
NewDataMetrics:新数据的计量经济学:理论、方法和应用
  • 批准号:
    EP/Z000335/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311274
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory, Algorithms and Applications for Large-Scale Bilevel Optimization
合作研究:CIF:小型:大规模双层优化的新理论、算法和应用
  • 批准号:
    2311275
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: New Theory and Applications of Non-smooth and Non-Lipschitz Riemannian Optimization
合作研究:CIF:小:非光滑和非Lipschitz黎曼优化的新理论和应用
  • 批准号:
    2308597
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research on new developments of theory of statistical inference and their applications o
统计推断理论新进展及其应用研究
  • 批准号:
    22K11928
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New order of risk management: Theory and applications in the era of systemic risk
风险管理新秩序:系统性风险时代的理论与应用
  • 批准号:
    580632-2022
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Collaborative Research: New Methods, Theory and Applications for Nonsmooth Manifold-Based Learning
协作研究:非平滑流形学习的新方法、理论和应用
  • 批准号:
    2243650
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
New Developments in Mean Field Game Theory and Applications
平均场博弈论及其应用的新进展
  • 批准号:
    2106556
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Connecting Model Theory and Function Spaces: New Applications in Analysis and Machine Learning
连接模型理论和函数空间:分析和机器学习的新应用
  • 批准号:
    555749-2020
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Collaborative Research: CIF: Small: New Theory and Applications of Non-smooth and Non-Lipschitz Riemannian Optimization
合作研究:CIF:小:非光滑和非Lipschitz黎曼优化的新理论和应用
  • 批准号:
    2007797
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了