Comprehensive Researches of Differential Equations
微分方程综合研究
基本信息
- 批准号:03302008
- 负责人:
- 金额:$ 9.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Co-operative Research (A)
- 财政年份:1991
- 资助国家:日本
- 起止时间:1991 至 1992
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
As for ordinary differential equations in real domains solvability and properties of solutions were studied actively, and there were a number of remarkable results concerning the existence and non-existence of oscillatory or periodic solutions of Linear equations and of oscillatory and non-oscillatory solutions of neutral functional differential equations, etc. For equations containing an infinite delay it was discovered that equi-ultimate boundedness is not a consequence of ultimate boundedness unlike the case of a finite delay. Concerning ordinary differential equations in complex domains researches on hypergeometric functions of several independent variables were vigorous continuously, and significant results were established for the monodromy theory, homology theory, connection problems, etc. An extension of Painleve equations to partial differential equations was attempted with a satisfactory outcome. As for the control theory of retarded functional differential equations known re … More sults on controllability, observability, identifiability, etc. were greatly extended for evolution equations containing partial differential equations. As is noticed from what is stated above it should be remarked that the intercourse between ordinary differential equations and partial differential equations was greatly promoted. As for linear partial differential equations numerous results were obtained for initial value problems, boundary value problems, mixed problems, hypoellipticity, scattering problems, etc. The hypoellipticity of infinitely degenerate operators was deeply studied, and an example of an operator which is hypoelliptic but not microhypoelliptic was obtained. A Cauchy-Kovalevskaja type theorem for an equation with a vector valued time variable was established. Concerning nonlinear elliptic equations the existence and non-existence of global solutions or oscillatory solutions, asymptotic behavior at infinity, the method of viscosity solutions, etc. were continuously active. As for equations of mathematical physics or biology a great number of remarkable results were obtained for the decay of solutions of Navier-Stokes equations, equations of thermal convection and compressible viscous gases, variational problems containing a free boundary, the motion of an interface between two different kinds of substances, the Schrodinger limit of waves in plasma, scattering theory of wave or elasticity equations, the stability of traveling wave solutions, global solvabilty of quasi-linear abstract differential equations with applications to population dynamics, and so on. Less
对于实区域上的常微分方程解的可解性和性质进行了积极的研究,关于线性方程的振动解或周期解的存在与不存在,中立型泛函微分方程解的振动与非振动解的存在与不存在等结果,等等。对于含有无限时滞的方程,我们发现与有限时滞不同,等终有界性并不是最终有界性的结果。关于复域上的常微分方程组,关于多个自变量的超几何函数的研究一直很活跃,在单调理论、同调理论、联络问题等方面都取得了重要的成果,并尝试将Painleve方程推广到偏微分方程组,得到了满意的结果。关于已知Re…的时滞泛函微分方程的控制理论对于含有偏微分方程解的发展方程,在能控性、能观测性、可辨识性等方面的结果得到了很大的推广。如上所述,应该指出的是,常微分方程组和偏微分方程组之间的相互作用得到了极大的促进。对于线性偏微分方程,在初值问题、边值问题、混合问题、亚椭圆性、散射问题等方面都得到了大量的结果,深入研究了无穷退化算子的亚椭圆性,得到了一个亚椭圆型而不是微亚椭圆型算子的例子。建立了具有向量值时间变量的方程的Cauchy-Kovalevskaja型定理。对于非线性椭圆型方程,整体解或振荡解的存在与不存在,无穷远处的渐近行为,粘性解的方法等一直活跃着。对于数学物理或生物方程,在Navier-Stokes方程、热对流和可压缩粘性气体方程的解的衰减、含有自由边界的变分问题、两种不同物质之间的界面运动、等离子体中波的薛定谔极限、波或弹性方程的散射理论、行波解的稳定性、拟线性抽象微分方程组的整体可解性及其在种群动力学中的应用等方面都取得了许多显著的结果。较少
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hiroki TANABE: "Fundamental solutions for linear retarded functional differential equations in Banach space" Funkcialaj Ekvacioj. 35. 149-178 (1992)
Hiroki TANABE:“Banach 空间中线性阻滞泛函微分方程的基本解”Funkcialaj Ekvacioj。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
石井 仁司: "Viscosity solutions for a class of HamiltonーJacobi equations in Hilbert spaces" Journal of Functional Analysis. 105. 301-341 (1992)
Hitoshi Ishii:“希尔伯特空间中一类 Hamilton-Jacobi 方程的粘度解”《泛函分析杂志》105. 301-341 (1992)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Keiji MATSUMOTO & Masaaki YOSHIDA: "Certain reflection groups acting on symmetric domains of type IV" Memoirs of the Faculty of Science, Kyushu University Series A. 46. 115-128 (1992)
松本庆二
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Jaroslav Jaros.,Takasi Kusano: "Oscillation properties of first order nonlinear functional differential equations of neutral type" Differential and Integral Equations. 4. 425-436 (1991)
Jaroslav Jaros.,Takasi Kusano:“中性型一阶非线性泛函微分方程的振荡性质”微分方程和积分方程。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Mitsuhiro Nakao: "Remarks on the existence and uniqueness of global decaying solutions of the nonlinear dissipative wave equations" Mathematische Zeitshcrift. 206. 265-276 (1991)
Mitsuhiro Nakao:“关于非线性耗散波动方程全局衰减解的存在性和唯一性的评论”Mathematicische Zeitshcrift。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANABE Hiroki其他文献
TANABE Hiroki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANABE Hiroki', 18)}}的其他基金
Study of herbal medicine for the intestinal tract immunity
肠道免疫草药的研究
- 批准号:
26860071 - 财政年份:2014
- 资助金额:
$ 9.47万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Possibility of the whole body supply of hydrogen formed in large intestine and the nutritional role
大肠形成的氢供应全身的可能性及其营养作用
- 批准号:
24700835 - 财政年份:2012
- 资助金额:
$ 9.47万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
The development of therapy for inflammatory bal tissue with Paneth cell-protection factorsowel disease using cultured epitheli
培养上皮细胞潘氏细胞保护因子治疗炎症性巴尔组织疾病的进展
- 批准号:
23890012 - 财政年份:2011
- 资助金额:
$ 9.47万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
System dynamics of social interaction between two persons using functional MRI - EEG - eye tracking simultaneous measurements.
使用功能性 MRI - EEG - 眼动追踪同步测量来实现两个人之间社交互动的系统动力学。
- 批准号:
23650224 - 财政年份:2011
- 资助金额:
$ 9.47万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Understanding of systems of paired-association process in human brain functional imaging
人脑功能成像中配对联想过程系统的理解
- 批准号:
20500361 - 财政年份:2008
- 资助金额:
$ 9.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The structure-activity relationship of prodefensin is investigated for a novel therapy of inflammatory bowel disease
研究防御素原的结构-活性关系以用于炎症性肠病的新疗法
- 批准号:
19590708 - 财政年份:2007
- 资助金额:
$ 9.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
CAREER: Fine-Grained Complexity and Algorithms for Structured Linear Equations and Linear Programs
职业:结构化线性方程和线性程序的细粒度复杂性和算法
- 批准号:
2238682 - 财政年份:2023
- 资助金额:
$ 9.47万 - 项目类别:
Continuing Grant
Linear Equations Solver for Domain Decomposition Based Parallel Finite Element Methods with Inconsistent Mesh
具有不一致网格的基于域分解的并行有限元方法的线性方程求解器
- 批准号:
20K19813 - 财政年份:2020
- 资助金额:
$ 9.47万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analysis of Non-linear Equations on Graphs
图上的非线性方程分析
- 批准号:
544940-2019 - 财政年份:2019
- 资助金额:
$ 9.47万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Elements: Software: Roundoff-Error-Free Algorithms for Large-Scale, Sparse Systems of Linear Equations and Optimization
要素:软件:大规模稀疏线性方程系统的无舍入误差算法和优化
- 批准号:
1835499 - 财政年份:2019
- 资助金额:
$ 9.47万 - 项目类别:
Standard Grant
Development of Iterative solvers for unsymmetric linear equations using Conjugate Gradient method and High Precision Arithmetic
使用共轭梯度法和高精度算术开发非对称线性方程的迭代求解器
- 批准号:
17K00164 - 财政年份:2017
- 资助金额:
$ 9.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis of rounding errors which arise from new solvers for solving linear equations and its future developments
求解线性方程组新求解器产生的舍入误差的数学分析及其未来发展
- 批准号:
26390136 - 财政年份:2014
- 资助金额:
$ 9.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Krylov Multigrid Methods for Eigenvalues and Linear Equations
特征值和线性方程的 Krylov 多重网格方法
- 批准号:
1418677 - 财政年份:2014
- 资助金额:
$ 9.47万 - 项目类别:
Standard Grant
"AF:Small:Efficient and reliable low-rank approximation techniques and fast solutions to large sparse linear equations"
“AF:Small:高效可靠的低秩逼近技术和大型稀疏线性方程的快速解”
- 批准号:
1319312 - 财政年份:2013
- 资助金额:
$ 9.47万 - 项目类别:
Standard Grant
Linear Equations in the Friables
Friables 中的线性方程
- 批准号:
450517-2013 - 财政年份:2013
- 资助金额:
$ 9.47万 - 项目类别:
University Undergraduate Student Research Awards
SI2-SSE Collaborative Research: SPIKE-An Implementation of a Recursive Divide-and-Conquer Parallel Strategy for Solving Large Systems of Linear Equations
SI2-SSE 合作研究:SPIKE——求解大型线性方程组的递归分治并行策略的实现
- 批准号:
1147337 - 财政年份:2012
- 资助金额:
$ 9.47万 - 项目类别:
Standard Grant