Asymptotic behaviors and oscillation of solutions for differential equation
微分方程解的渐近行为和振荡
基本信息
- 批准号:03640152
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1991
- 资助国家:日本
- 起止时间:1991 至 1993
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Continuous dependence of periodic solutions concerning a parameter for periodic quasilinear ordinary diffrential equations is dealt with in Saito-Yamamoto [1] via fixed points theorems, and we obtain extensions of theorems due to Cronin, Hale and Mahwin respectively.Saito [2] discusses stability and asymptotic equivalence of between ordinary differential linear systems and quasilinear systems, and has improved theorems of asymptotic behaviors of solutions by some new method.Nagabuchi-Yamamoto [3] consider boundedness and monotonicity of solutions for second-order nonlinear ordinary differential equations and obtain some extensions of theorems due to Wong and Marini-Zezza.In Nagabuchi-Yamamoto [4] a new necessary and sufficient condition for solutions of generalized Lienard equations with pertubing terms to oscillate is investigated by applying using auxiliary functions and the invariance principle.The above results of asymptotic behaviors and oscillation of solutions for ordinary differential equations are extensions of those obtained by many investigators. Throughout the above articles, it can be considered that almost all of our purposes have been acheved.Moreover in Ohnaka [5] and Ohnaka-Oshiumi [6] some studies on an identification method of external forces for a deterministic distributed-parameter system are obtained and numerical example are given for illustrating the applicability of our method.And in Miyakoda [7-9] we discuss local properties of the Durand-Kerner approximation to multiple zeroes of complex polynomial equations.
利用不动点定理,在Saito-Yamamoto[1]中讨论了周期拟线性常微分方程周期解关于参数的连续依赖性,并分别得到了Cronin、Hale和Mahwin的定理的推广。Saito[2]讨论了常微分线性系统与拟线性系统的稳定性和渐近等价性,并用一些新方法改进了解的渐近行为定理。考虑二阶非线性常微分方程解的有界性和单调性,得到了Wong和Marini-Zezza的定理的推广。在Nagabuchi-Yamamoto[4]中,利用辅助函数和不变性原理,研究了一类具有连续项的广义Lienard方程解振动的一个新的充要条件。上述关于常微分方程解的渐近性态和振动性的结果是许多研究者所得到的结果的推广。纵观以上文章,可以认为我们几乎所有的目的都达到了。此外,在Ohnaka[5]和Ohnaka- oshiumi[6]中,对确定性分布参数系统的外力辨识方法进行了一些研究,并给出了数值算例来说明本文方法的适用性。在Miyakoda[7-9]中,我们讨论了复多项式方程的多零Durand-Kerner近似的局部性质。
项目成果
期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Seiji Saito: "Asymptotic Equivalence of Quasilinear Ordinary Differential Systems" Mathematica Japonica. 37. 503-513 (1992)
Seiji Saito:“拟线性常微分系统的渐近等价”Mathematica Japonica。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
都田艶子: "代数方程式に対する同時反復解法の平衡収束性" 数値解析. 43-2. 9-16 (1992)
Tsuyako Miyakoda:“代数方程联立迭代解的平衡收敛”数值分析43-2。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Nagabuchi,Yutaka Yamamoto,Minoru: "On the Monotonicity of Solutions for a Class of Nonlinear Differential Equations of Second Order" Math.Japon.37. 665-673 (1992)
Nagabuchi、Yutaka Yamamoto、Minoru:“论一类二阶非线性微分方程解的单调性”Math.Japon.37。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Saito,Seiji,Yamamoto,Minoru: "The Continuous Dependence of Periodic Solutions for the Periodic Quasilinear Ordinary Differential System Containing a Parameter" J.Math.Anal.Appl.159. 110-126 (1991)
Saito、Seiji、Yamamoto、Minoru:“包含参数的周期拟线性常微分系统的周期解的连续依赖性”J.Math.Anal.Appl.159。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K.OhnakaーH.Amoh: "Vectorization of an Interval Method for Finding Zeros of a Polynomial" Technology Reports of The Osaka Univ.211-219 (1991)
K.Onaka-H.Amoh:“用于查找多项式零点的区间方法的向量化”大阪大学技术报告 211-219 (1991)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SAITO Seiji其他文献
SAITO Seiji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SAITO Seiji', 18)}}的其他基金
Study on the risk threshold of worn-out soles and the optimal shape of the soles
鞋底磨损风险阈值及最优鞋底形状研究
- 批准号:
22700588 - 财政年份:2010
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Promoting the experiential learning by story-sharing in university students with developmental disabilities-Construction of the Web-based support system-
通过故事分享促进发育障碍大学生的体验式学习-基于网络的支持系统的构建-
- 批准号:
21530720 - 财政年份:2009
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of Chaos and Fractals via Photonic Computing and Approaches of Fuzzy Mathematical Method
通过光子计算和模糊数学方法分析混沌和分形
- 批准号:
16500128 - 财政年份:2004
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regulation Mechanism on Growth and Differentiation of Pancreatic Cancer Cells
胰腺癌细胞生长分化的调控机制
- 批准号:
02670300 - 财政年份:1990
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Asymptotic behavior of null geodesics near future null infinity and its application
近未来零无穷大零测地线的渐近行为及其应用
- 批准号:
22KJ1933 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The algebraic analysis of evanescent operators in effective field theory and their asymptotic behavior
有效场论中倏逝算子的代数分析及其渐近行为
- 批准号:
22KJ1072 - 财政年份:2023
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Regularity and Asymptotic Behavior in Fluid Dynamics
流体动力学中的规律性和渐近行为
- 批准号:
2205493 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Asymptotic behavior of global in time solutions to the viscous conservation laws
粘性守恒定律全局时间解的渐近行为
- 批准号:
22K03371 - 财政年份:2022
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotic behavior of solutions to hyperbolic and dispersive equations with damping terms
具有阻尼项的双曲和色散方程解的渐近行为
- 批准号:
19K03596 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of the asymptotic behavior of the solution to nonlinear dispersive equations in high dimensions
高维非线性色散方程解的渐近行为的阐明
- 批准号:
19K14578 - 财政年份:2019
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Structural conditions for global existence of solutions and the asymptotic behavior of global solutions for systems of nonlinear partial differential equations related to nonlinear waves
与非线性波相关的非线性偏微分方程组解全局存在的结构条件和全局解的渐近行为
- 批准号:
18H01128 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The asymptotic behavior of the Reidemeister torsion for degenerate hyperbolic structures
简并双曲结构的 Reidemeister 挠率的渐近行为
- 批准号:
17K05240 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study of asymptotic behavior of threshold orbit arising in gradient systems with noncompact energy structure
非紧能量结构梯度系统阈轨道渐近行为研究
- 批准号:
17K05323 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Asymptotic behavior of solutions of dissipative hyperbolic equations
耗散双曲方程解的渐近行为
- 批准号:
17K05338 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)