Development of Neural Network System for Prediction of Catalytic Performance

催化性能预测神经网络系统的开发

基本信息

  • 批准号:
    06555242
  • 负责人:
  • 金额:
    $ 2.56万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 1996
  • 项目状态:
    已结题

项目摘要

The present research aims at examining the possibility of neural network system to predict optimum catalyst extracting knowledge required for catalyst design from various experimental results, and the following resuts were obtained.(1) Prediction of Catalytic Performance by Neural NetworkNeural network was applied for the prediction of catalytic activity and selectivity by taking as an example the oxidative dehydrogenation of ethylbenzene on 19 promoted tin oxide catalysts. The predicted activity and selectivities of five products were in good agreement with those measured experimentally within reasonable experimental error.The possibility of extrapolative prediction was examined by taking as an example the oxidation of alkanes on a series of lanthanide oxides, in which catalytic performance is known to be a function of fourth ionization potential of lanthanide ions. In butane oxidation, where a monotonous correlation had been empirically established between the catalytic activity and … More the fourth ionization potential, the neural network well predicted the activities in both ends of the correlation as well as those in between. The neural network predicted, in methane oxidation, even volcano type changes of the activity and the selectivities of C_2 hydrocarbons, CO and CO_2. These results indicate that the neural network can be applied to both of the interpolative prediction for optimization of catalysts and the extrapolative prediction, at least for improvement of catalysts.(2) Estimation of Factors Controlling Catalytic Performance by Neural NetworkIn the prediction of catalytic activities of lanthanide oxides in butane oxidation, it was found that the fourth ionization potential is a key controlling factor, because the prediction accuracy was high only when input data include ionization potential. These results suggest that a leave-one-out test of input data would be effective for the selection of controlling factors : The importance of each input data could be estimated by leaving one of the input data out of the training set.On the basis of these results, some remarks were given on the estimation of the key factor controlling catalytic performance by neural network and on the catalyst development by using neural network.(3) Catalytic Experiments in Selective Reduction of Nitrogen OxideAs an example of novel catalytic reaction, the reduction of nitrogen oxide with propylene and methane was conducted by using ion-exchanged zeolite catalysts and oxide catalysts, and the preliminary test was conducted to apply the neural network system for the catalyst design of reduction of nitrogen oxide. Less
The present research aims at examining the possibility of neural network system to predict optimum catalyst extracting knowledge required for catalyst design from various experimental results, and the following rests were obtained.(1) Prediction of Catalytic Performance by Neural NetworkNeural network was applied for the prediction of catalytic activity and selectivity by taking as an example the oxide dehydrogenation of ethylbenzene on 19 promoted tin oxide catalysts.五种产物的预测活性和选择性与在合理的实验误差中实验测量的活性和选择性非常吻合。通过以示例为例,可以检查外外预测的可能性。烷烃在一系列型腺苷酸氧化物上的氧化,其中催化性能是六烷基离子离子电源的四个离子化电位的功能。在丁烷氧化中,在催化活性和……第四个电离潜力之间已经实证建立了单调相关性,神经元网络很好地预测了相关性的两端以及之间的活性。神经元网络在氧化甲烷中预测了活性的火山类型变化以及C_2碳氢化合物的选择性,CO和CO_2。 These results indicate that the neuronal network can be applied to both of the interpolative prediction for optimization of catalysts and the extrapolative prediction, at least for improvement of catalysts.(2) Estimation of Factors Controlling Catalytic Performance by Neural NetworkIn the prediction of catalytic activities of lanthanide oxides in butane oxidation, it was found that the fourth ionization potential is a key controlling factor, because the prediction accuracy was仅当输入数据包括电离电位时高。这些结果表明,对输入数据的一对一测试将有效地选择控制因素:可以通过将一个输入数据排除在培训设置的基础上来估算每个输入数据的重要性。在这些结果的基础上,对神经网络和使用神经网络进行催化的催化型的关键因素的估计,给出了一些提醒。新型催化反应的例子,通过使用离子交换的沸石催化剂和氧化催化剂进行丙烯和甲烷的氮还原,并进行了初步测试以将神经网络系统应用于减少氮氧化物的催化剂设计。较少的

项目成果

期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Satsuma,et al: "Factors controlling catalytic activity of H-form zeolites for the selective reduction of NO with CH4." Stud.Surf.Sci.Catal.(印刷中).
A.Satsuma 等人:“控制 H 型沸石用 CH4 选择性还原 NO 的催化活性的因素。”(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Hattori, S. Kito: "Neural Networks in Catalyst Design : An Art Turning into Science" Proc. 15th World Petrol. Conf., Beijing, 1977. (in press).
T. Hattori、S. Kito:“催化剂设计中的神经网络:一门艺术转变为科学”Proc。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K. Shimizu, M. Takamatsu, K. Nishi, H. Yoshida, A. Satsuma, T. Hattori: "Influence of Local Structure on the Catalytic Activity of Gallium Oxide for the NO Selective Reduction by CH4" J. Chem. Soc., Chem. Commun.(in press).
K. Shimizu、M. Takamatsu、K. Nishi、H. Yoshida、A. Satsuma、T. Hattori:“局部结构对氧化镓对 CH4 选择性还原 NO 的催化活性的影响”J. Chem。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A. Satsuma, M. Iwase, A. Shichi, T. Hattori, Y. Murakami: "Factors Controlling Catalytic Activity of H-form Zeolites for the Selective Reduction of NO with CH4 of Propane" Stud. Surf. Sci. catal.105. 1533-1540 (1997)
A. Satsuma、M. Iwase、A. Shichi、T. Hattori、Y. Murakami:“控制 H 型沸石用丙烷 CH4 选择性还原 NO 的催化活性的因素”螺柱。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Hattori: "Acid Strength of Binary Mixed Oxide-Estimation by Neural Network and Experimental Verification" Stud.Surface Sci.Catal.90. 229-232 (1994)
T.Hattori:“通过神经网络和实验验证估计二元混合氧化物的酸强度”Stud.Surface Sci.Catal.90。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HATTORI Tadashi其他文献

HATTORI Tadashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HATTORI Tadashi', 18)}}的其他基金

Establishment of a Method for Judging Artistic Value of the Works by the Creators with Disabilities
残疾创作者作品艺术价值评判方法的建立
  • 批准号:
    26370121
  • 财政年份:
    2014
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of anatase type solid solution photocatalyst by using neural network
利用神经网络设计锐钛矿型固溶体光催化剂
  • 批准号:
    18560744
  • 财政年份:
    2006
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a New Micro-Nano Solid Processing Technology Based on a LIGA Process and a Next-Generation Micro Actuators
基于LIGA工艺和下一代微执行器的新型微纳固体加工技术的开发
  • 批准号:
    16078212
  • 财政年份:
    2004
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Research of the fabrication for arbitrary 3D structure devices using synchrotron radiation (SR)
利用同步辐射(SR)制造任意3D结构器件的研究
  • 批准号:
    13450299
  • 财政年份:
    2001
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of Adsorption-photodegradation
吸附-光降解的发展
  • 批准号:
    12555223
  • 财政年份:
    2000
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Structure-Activity Relationship on Metal Oxide Catalysts by Means of Computational Chemistry
利用计算化学研究金属氧化物催化剂的构效关系
  • 批准号:
    12450326
  • 财政年份:
    2000
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Adsorption heat pump using porous materials - Development of environmental friendly energy system
使用多孔材料的吸附式热泵 - 开发环保能源系统
  • 批准号:
    09355026
  • 财政年份:
    1997
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Catalytic Activation of Lower Alkanes under Carbon Dioxide Atmosphere
二氧化碳气氛下低级烷烃的催化活化
  • 批准号:
    07455321
  • 财政年份:
    1995
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Molecular Dynamics and Reaction Engineering for Unique and Extreme Reaction Fields.
独特和极端反应场的分子动力学和反应工程。
  • 批准号:
    07242105
  • 财政年份:
    1995
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas

相似国自然基金

基于深穿透拉曼光谱的安全光照剂量的深层病灶无创检测与深度预测
  • 批准号:
    82372016
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
强子对撞机上一对希格斯粒子产生和衰变过程的精确理论预言
  • 批准号:
    12375076
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
强子三维结构分布函数的理论预言
  • 批准号:
    12375080
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于机器学习方法设计和预言多组元合金体系材料的研究
  • 批准号:
    92270104
  • 批准年份:
    2022
  • 资助金额:
    75.00 万元
  • 项目类别:
    重大研究计划
次次领头阶anti-kT以及同类型的喷注函数和pA对撞中喷注向前产生的预言
  • 批准号:
    12175016
  • 批准年份:
    2021
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目

相似海外基金

G6PC Enzymology, Structure, Function and Role in the Regulation of Fasting Blood Glucose
G6PC 酶学、结构、功能及其在空腹血糖调节中的作用
  • 批准号:
    10584866
  • 财政年份:
    2023
  • 资助金额:
    $ 2.56万
  • 项目类别:
Transfer learning in the prediction of catalytic activity of photosensitizers
迁移学习在光敏剂催化活性预测中的应用
  • 批准号:
    23K13744
  • 财政年份:
    2023
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Prediction of Catalytic Activity of Multinary Alloy Nanoparticle by Real-system All-electron Calculations
真实系统全电子计算预测多元合金纳米粒子的催化活性
  • 批准号:
    21H01739
  • 财政年份:
    2021
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CryoEM Structural Studies of DNA-PKcs and Nonhomologous End Joining Complexes
DNA-PKcs 和非同源末端连接复合物的冷冻电镜结构研究
  • 批准号:
    8225317
  • 财政年份:
    2010
  • 资助金额:
    $ 2.56万
  • 项目类别:
CryoEM Structural Studies of DNA-PKcs and Nonhomologous End Joining Complexes
DNA-PKcs 和非同源末端连接复合物的冷冻电镜结构研究
  • 批准号:
    7888584
  • 财政年份:
    2010
  • 资助金额:
    $ 2.56万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了