Development of Neural Network System for Prediction of Catalytic Performance
催化性能预测神经网络系统的开发
基本信息
- 批准号:06555242
- 负责人:
- 金额:$ 2.56万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1994
- 资助国家:日本
- 起止时间:1994 至 1996
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The present research aims at examining the possibility of neural network system to predict optimum catalyst extracting knowledge required for catalyst design from various experimental results, and the following resuts were obtained.(1) Prediction of Catalytic Performance by Neural NetworkNeural network was applied for the prediction of catalytic activity and selectivity by taking as an example the oxidative dehydrogenation of ethylbenzene on 19 promoted tin oxide catalysts. The predicted activity and selectivities of five products were in good agreement with those measured experimentally within reasonable experimental error.The possibility of extrapolative prediction was examined by taking as an example the oxidation of alkanes on a series of lanthanide oxides, in which catalytic performance is known to be a function of fourth ionization potential of lanthanide ions. In butane oxidation, where a monotonous correlation had been empirically established between the catalytic activity and … More the fourth ionization potential, the neural network well predicted the activities in both ends of the correlation as well as those in between. The neural network predicted, in methane oxidation, even volcano type changes of the activity and the selectivities of C_2 hydrocarbons, CO and CO_2. These results indicate that the neural network can be applied to both of the interpolative prediction for optimization of catalysts and the extrapolative prediction, at least for improvement of catalysts.(2) Estimation of Factors Controlling Catalytic Performance by Neural NetworkIn the prediction of catalytic activities of lanthanide oxides in butane oxidation, it was found that the fourth ionization potential is a key controlling factor, because the prediction accuracy was high only when input data include ionization potential. These results suggest that a leave-one-out test of input data would be effective for the selection of controlling factors : The importance of each input data could be estimated by leaving one of the input data out of the training set.On the basis of these results, some remarks were given on the estimation of the key factor controlling catalytic performance by neural network and on the catalyst development by using neural network.(3) Catalytic Experiments in Selective Reduction of Nitrogen OxideAs an example of novel catalytic reaction, the reduction of nitrogen oxide with propylene and methane was conducted by using ion-exchanged zeolite catalysts and oxide catalysts, and the preliminary test was conducted to apply the neural network system for the catalyst design of reduction of nitrogen oxide. Less
本研究旨在探索神经网络系统从各种实验结果中提取催化剂设计所需的知识来预测最优催化剂的可能性,得到以下结果:(1)神经网络预测催化性能以19种助剂氧化锡催化剂上的乙苯氧化脱氢为例,应用神经网络预测催化活性和选择性。以烷烃在一系列稀土氧化物上的氧化反应为例,考察了预测的可能性,其催化性能与稀土离子的第四电离能有关。在丁烷氧化中,已经经验地在催化活性和…之间建立了单调关联在第四个电离势中,神经网络较好地预测了关联两端以及关联之间的活动。神经网络对甲烷氧化反应中C_2烃、CO和CO_2的活性和选择性的火山类型变化进行了预测。这些结果表明,神经网络既可以用于催化剂优化的内插预测,也可以用于外推预测,至少可以用于催化剂的改进。(2)神经网络对催化性能控制因素的估计在预测稀土氧化物在丁烷氧化中的催化活性时,发现第四电离势是一个关键的控制因素,因为只有当输入数据包括电离势时,预测精度才较高。这些结果表明,输入数据的留一检验对于控制因素的选择是有效的:每个输入数据的重要性可以通过从训练集中剔除一个输入数据来估计。在这些结果的基础上,给出了用神经网络估计控制催化性能的关键因素和用神经网络进行催化剂开发的一些意见。(3)氮氧化物选择还原催化实验作为一种新型催化反应的例子,用离子交换沸石催化剂和氧化物催化剂进行了丙烯和甲烷还原氮氧化物的反应,并对神经网络系统在氮氧化物还原催化剂设计中的应用进行了初步试验。较少
项目成果
期刊论文数量(25)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Satsuma,et al: "Factors controlling catalytic activity of H-form zeolites for the selective reduction of NO with CH4." Stud.Surf.Sci.Catal.(印刷中).
A.Satsuma 等人:“控制 H 型沸石用 CH4 选择性还原 NO 的催化活性的因素。”(正在出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T. Hattori, S. Kito: "Neural Networks in Catalyst Design : An Art Turning into Science" Proc. 15th World Petrol. Conf., Beijing, 1977. (in press).
T. Hattori、S. Kito:“催化剂设计中的神经网络:一门艺术转变为科学”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Hattori: "Acid Strength of Binary Mixed Oxide-Estimation by Neural Network and Experimental Verification" Stud.Surface Sci.Catal.90. 229-232 (1994)
T.Hattori:“通过神经网络和实验验证估计二元混合氧化物的酸强度”Stud.Surface Sci.Catal.90。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A. Satsuma, M. Iwase, A. Shichi, T. Hattori, Y. Murakami: "Factors Controlling Catalytic Activity of H-form Zeolites for the Selective Reduction of NO with CH4 of Propane" Stud. Surf. Sci. catal.105. 1533-1540 (1997)
A. Satsuma、M. Iwase、A. Shichi、T. Hattori、Y. Murakami:“控制 H 型沸石用丙烷 CH4 选择性还原 NO 的催化活性的因素”螺柱。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
K. Shimizu, M. Takamatsu, K. Nishi, H. Yoshida, A. Satsuma, T. Hattori: "Influence of Local Structure on the Catalytic Activity of Gallium Oxide for the NO Selective Reduction by CH4" J. Chem. Soc., Chem. Commun.(in press).
K. Shimizu、M. Takamatsu、K. Nishi、H. Yoshida、A. Satsuma、T. Hattori:“局部结构对氧化镓对 CH4 选择性还原 NO 的催化活性的影响”J. Chem。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HATTORI Tadashi其他文献
HATTORI Tadashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HATTORI Tadashi', 18)}}的其他基金
Establishment of a Method for Judging Artistic Value of the Works by the Creators with Disabilities
残疾创作者作品艺术价值评判方法的建立
- 批准号:
26370121 - 财政年份:2014
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design of anatase type solid solution photocatalyst by using neural network
利用神经网络设计锐钛矿型固溶体光催化剂
- 批准号:
18560744 - 财政年份:2006
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a New Micro-Nano Solid Processing Technology Based on a LIGA Process and a Next-Generation Micro Actuators
基于LIGA工艺和下一代微执行器的新型微纳固体加工技术的开发
- 批准号:
16078212 - 财政年份:2004
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Research of the fabrication for arbitrary 3D structure devices using synchrotron radiation (SR)
利用同步辐射(SR)制造任意3D结构器件的研究
- 批准号:
13450299 - 财政年份:2001
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Adsorption-photodegradation
吸附-光降解的发展
- 批准号:
12555223 - 财政年份:2000
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Structure-Activity Relationship on Metal Oxide Catalysts by Means of Computational Chemistry
利用计算化学研究金属氧化物催化剂的构效关系
- 批准号:
12450326 - 财政年份:2000
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Adsorption heat pump using porous materials - Development of environmental friendly energy system
使用多孔材料的吸附式热泵 - 开发环保能源系统
- 批准号:
09355026 - 财政年份:1997
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Catalytic Activation of Lower Alkanes under Carbon Dioxide Atmosphere
二氧化碳气氛下低级烷烃的催化活化
- 批准号:
07455321 - 财政年份:1995
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Molecular Dynamics and Reaction Engineering for Unique and Extreme Reaction Fields.
独特和极端反应场的分子动力学和反应工程。
- 批准号:
07242105 - 财政年份:1995
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
相似海外基金
ALPACA - Advancing the Long-range Prediction, Attribution, and forecast Calibration of AMOC and its climate impacts
APACA - 推进 AMOC 及其气候影响的长期预测、归因和预报校准
- 批准号:
2406511 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
EAGER: Integrating Pathological Image and Biomedical Text Data for Clinical Outcome Prediction
EAGER:整合病理图像和生物医学文本数据进行临床结果预测
- 批准号:
2412195 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
Audiphon (Auditory models for automatic prediction of phonation)
Audiphon(用于自动预测发声的听觉模型)
- 批准号:
24K03872 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A robust ensemble Kalman filter to innovate short-range severe weather prediction
强大的集成卡尔曼滤波器创新短程恶劣天气预测
- 批准号:
24K07131 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Data-driven prediction of fatigue crack nucleation in directionally-solidified Ni-based superalloys
定向凝固镍基高温合金疲劳裂纹形核的数据驱动预测
- 批准号:
24K07230 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
Standard Grant
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared care
I(eye)-SCREEN:基于人工智能的现实基础设施,用于筛查和预测年龄相关性黄斑变性 (AMD) 的进展,提供可及的共享护理
- 批准号:
10102692 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
EU-Funded
Prediction, Monitoring and Personalized Recommendations for Prevention and Relief of Dementia and Frailty
预防和缓解痴呆症和衰弱的预测、监测和个性化建议
- 批准号:
10103541 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
EU-Funded
Multi-variable based vegetation monitoring and prediction during droughts
干旱期间基于多变量的植被监测与预测
- 批准号:
FT230100209 - 财政年份:2024
- 资助金额:
$ 2.56万 - 项目类别:
ARC Future Fellowships