Development of computer assisted neurosurgical techniques with reconstructed cerebral surface anatomical images for presurgical planning and image guided localization
开发利用重建脑表面解剖图像进行术前规划和图像引导定位的计算机辅助神经外科技术
基本信息
- 批准号:06557080
- 负责人:
- 金额:$ 1.28万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Developmental Scientific Research (B)
- 财政年份:1994
- 资助国家:日本
- 起止时间:1994 至 1995
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The aim of the project is to develop simple reconstruction method for cerebral surface images of the neurosurgical patient from CT or MR images and to make it possible to perform simulation surgery and image guided localization. This will enhance neurosurgical accuracy and safeness greatly.We have developed a simple and practical method to reconstruct cerebral surface anatomical images of patient for better presurgical planning and surgical orientation with an aid of a personal computer. The area representing the cortical surface was selected from the most superficial slice of the T1-weighted magnetic resonance (MR) image. The selected area was then overlaid upon the next superficial slice and the alignment adjusted. By repeating this procedure four to seven times, we obtained a brain surface image, which clearly displayd gyri and sulci. With the same method, image of the vascular components of the cerebral surface was obtained from the T2-weighted images or MR angiograms. The brain surface and the vascular images were then combined to reconstruct a surface anatomical image (SAI). In addition, the outline of the lesion and natural landmarks, such as ventricles, were added if necessary. Compared to conventional surface anatomy scanning (SAS) or three-dimensional image reconstruction procedures, our method has the advantage of displaying, within a reasonable time, the manifest cortical surface from the direction of the planned surgical approach. The SAIs obtained for individual patients proved to be useful in daily neurosurgical operations for presurgical planning and minimizing surgical damage to the eloquent cortex in approaching both surface and subcortical lesions.
该项目的目的是开发简单的重建方法,从CT或MR图像的神经外科患者的大脑表面图像,并使其能够进行模拟手术和图像引导定位。本文介绍了一种简单实用的脑表面解剖图像重建方法,可在微机上进行脑表面解剖图像的重建,以便于术前规划和手术定位。从T1加权磁共振(MR)图像的最浅表切片中选择代表皮质表面的区域。然后将选定区域覆盖在下一个浅表切片上,并调整对齐。重复4 ~ 7次,我们得到了脑表面图像,清晰地显示了脑回和脑沟。用同样的方法,从T2加权图像或MR血管造影中获得大脑表面血管成分的图像。然后将脑表面和血管图像组合以重建表面解剖图像(SAI)。此外,如有必要,还可添加病变轮廓和自然标志(如心室)。与传统的表面解剖扫描(SAS)或三维图像重建程序相比,我们的方法具有在合理的时间内从计划的手术方法的方向显示明显的皮质表面的优势。从个体患者中获得的SAI被证明在日常神经外科手术中对于术前规划和在接近表面和皮质下病变时最大限度地减少对功能皮质的手术损伤是有用的。
项目成果
期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Kato: "Development of neurosurgical navigational system." Shimadzn Hyouron. 241. 45-57 (1995)
加藤 A:“神经外科导航系统的开发。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
早川 徹: "「手術のセットアップ」脳手術支援システム" Neurosurgeons. 13. 34-42 (1994)
早川彻:“‘手术设置’脑外科支持系统”神经外科医生。13. 34-42 (1994)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A Kato: "Computer assisted neurosurgery" Neurosurgeons. 13. 34-42 (1994)
加藤 A:“计算机辅助神经外科”神经外科医生。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T Hayakawa: "Development of surgical simulation system with neurosurgical navigator." Innervision (Tokyo). 9. 34 (1994)
T Hayakawa:“使用神经外科导航器开发手术模拟系统。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A Kato: "Computer assisted neurosurgical navigation system." Clin Neurosci. 13. 930-934 (1995)
加藤 A:“计算机辅助神经外科导航系统。”
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HAYAKAWA Toru其他文献
Movement of upper extremity and kitchen knife during
上肢和菜刀的动作
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
HAYAKAWA Toru;WAKAYAMA Masafumi;KUME Masashi NAKAI Asami;YOSHIDA Tetsuya - 通讯作者:
YOSHIDA Tetsuya
HAYAKAWA Toru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HAYAKAWA Toru', 18)}}的其他基金
Basic research to design "Order-made" Cry toxin
设计“定制”Cry毒素的基础研究
- 批准号:
20380036 - 财政年份:2008
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Genetic diagnosis of gliomas and its clinical application
胶质瘤的基因诊断及其临床应用
- 批准号:
05454397 - 财政年份:1993
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for General Scientific Research (B)
Purification of ischemia induced neurotrophic factor and its application to the vascular dementia
缺血诱导神经营养因子的纯化及其在血管性痴呆中的应用
- 批准号:
02670628 - 财政年份:1990
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
Development of the Computer Assisted Neurosurgery (CANS)
计算机辅助神经外科 (CANS) 的发展
- 批准号:
01870063 - 财政年份:1989
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research (B).
Experimental study to facilitate the repaair of brain injury by artificial modification of cellular function and brain transplantation.
通过细胞功能人工修饰和脑移植促进脑损伤修复的实验研究。
- 批准号:
62570658 - 财政年份:1987
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
- 批准号:
EP/X039277/1 - 财政年份:2024
- 资助金额:
$ 1.28万 - 项目类别:
Research Grant
A New Computational Framework for Superior Image Reconstruction in Limited Data Quantitative Photoacoustic Tomography
有限数据定量光声断层扫描中卓越图像重建的新计算框架
- 批准号:
2309491 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Standard Grant
Self-supervised deep-learned physics-informed PET image reconstruction for oncology
用于肿瘤学的自监督深度学习物理学 PET 图像重建
- 批准号:
2886561 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Studentship
High Accuracy Image Reconstruction Using Microwave Measurements from Bio-Matched Antennas and Deep Learning: A Synthesized X-ray Computed Tomography Approach
使用生物匹配天线和深度学习的微波测量进行高精度图像重建:一种合成 X 射线计算机断层扫描方法
- 批准号:
2244882 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Standard Grant
Data driven inversion methods and image reconstruction for nonlinear media
非线性介质的数据驱动反演方法和图像重建
- 批准号:
2308200 - 财政年份:2023
- 资助金额:
$ 1.28万 - 项目类别:
Standard Grant
Radiation propagation modelling and image reconstruction for X-ray time-of-flight computed tomography
X 射线飞行时间计算机断层扫描的辐射传播建模和图像重建
- 批准号:
RGPIN-2021-03858 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Discovery Grants Program - Individual
Machine learning augmented hierarchical tomographic image reconstruction of human organs
机器学习增强人体器官分层断层图像重建
- 批准号:
2720289 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Studentship
Improving the Signal Model in Radar-based Image Reconstruction and a Novel Machine Learning Approach for Breast Microwave Imaging
改进基于雷达的图像重建中的信号模型以及乳腺微波成像的新型机器学习方法
- 批准号:
547670-2020 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Signal Processing and Interpretable Deep Network for Image Reconstruction
用于图像重建的信号处理和可解释深度网络
- 批准号:
2784995 - 财政年份:2022
- 资助金额:
$ 1.28万 - 项目类别:
Studentship