一般化されたKac-Moodyリー環の表現の研究
广义Kac-Moody李代数表示的研究
基本信息
- 批准号:06740017
- 负责人:
- 金额:$ 0.58万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Encouragement of Young Scientists (A)
- 财政年份:1994
- 资助国家:日本
- 起止时间:1994 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
generalized Kac-Moody algebra(=GKM algebra)は、近年Borcherdsにより、位数最大の散在型有限単純群であるMonster群の無限次元表現moonshine moduleの研究の過程において導入された概念であり、Kac-Moodyリー環の自然な一般化ともなっている。今、g(A)を、対称なGGCMと呼ばれる行列Aに付随するGKM algebra、p^-をそのopposite parabolic subalgebra、そしてu^-はp^-のnilpotent radical、mはp^-のmaximal reductive subalgebraであるとする。このとき、自明な一次元加群Cに係数を持つu^-のホモロジー群Hp(u^-,C)(p【greater than or equal】0)の、m-加群としての既約分解を決定する事は非常に重要な問題であり、mがKac-Moodyリー環の場合には、既に解決されている。特に、p^-がopposite Borel subalgebra b^-であるときは、このホモロジー群の指標の交代和を取る事により、ある種の離散部分群に関する有理型保型形式が得られる事が分かっている。ところが、mが必ずしもKac-Moodyリー環でない場合、即ち、一般のGKM環である場合には、カテゴリーOに属するGKM環上の加群が完全可約である為の良い十分条件が知られていなかった事もあって、あまり調べられていなかった。私は、この完全可約性の為の(かなり一般的な)一つの十分を得、それを利用して、ある条件の下でホモロジー群Hp(u^-,C)がm-加群として完全可約である事を示し、そのm-既約成分への直和分解を決定した。さらに、今後の計画としては、この結果をGKM環のroot multiplicity等の研究に応用する事を考えている。
The generalized Kac-Moody algebra(=GKM algebra) is a new concept introduced into the study of infinite dimensional moonshine module of Borcherds finite pure group with maximum number of digits. Now, g(A) is called GGCM and row A. The problem of determining the reduced decomposition of the m-addition group is very important in the case of a Kac-Moody ring. Special, p^-opposite Borel subalgebra b^- The addition group on the GKM ring is completely reducible under the condition that it is a good ten points condition. The complete reducibility of the group Hp(u^-,C) is determined by the direct sum decomposition of the m-reduced components. The research on root multiplicity of GKM ring and its application in future projects are discussed.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
内藤 聡其他文献
Semi-infinite LS path realization of Demazure subcrystals for level-zero extremal weight modules over quantum affine algebras
量子仿射代数上零级极值权模 Demazure 子晶体的半无限 LS 路径实现
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
S.Naito;D.Sagaki;Y. Saito;S.Kato,S.Naito,andD.Sagaki;Satoshi Naito;内藤 聡;Satoshi Naito;Satoshi Naito;Satoshi Naito;Satoshi Naito;Satoshi Naito - 通讯作者:
Satoshi Naito
Demazure submodules of level-zero extremal weight modules and specializations of nonsymmetric Macdonald polynomials
零级极端权重模块的 Demazure 子模块和非对称麦克唐纳多项式的特化
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
S.Naito;D.Sagaki;Y. Saito;S.Kato,S.Naito,andD.Sagaki;Satoshi Naito;内藤 聡;Satoshi Naito;Satoshi Naito;Satoshi Naito;Satoshi Naito - 通讯作者:
Satoshi Naito
チェレンコフ放射を利用した不安定核ビーム高時間分解能検出器の研究 III
切伦科夫辐射III不稳定核束高时间分辨率探测器研究
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
守裕也;山本誠;福留功二;福島直哉;内藤 聡;Tomoki Nakanishi;宮田恵理 - 通讯作者:
宮田恵理
Estimates for Fourier coefficients of the Duke-Imamoglu-Ikeda lift 2022年6月24日 京都
Duke-Imamoglu-Ikeda 缆车的傅立叶系数估计 2022 年 6 月 24 日 京都
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
守裕也;山本誠;福留功二;福島直哉;内藤 聡;Tomoki Nakanishi;宮田恵理;Hidenori Katsurada;桂田英典, - 通讯作者:
桂田英典,
Specializations of symmetric Macdonald polynomials and pseudoQLS paths
符号麦克唐纳多项式和伪QLS路径的特化
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
S.Naito;D.Sagaki;Y. Saito;S.Kato,S.Naito,andD.Sagaki;Satoshi Naito;内藤 聡;Satoshi Naito - 通讯作者:
Satoshi Naito
内藤 聡的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('内藤 聡', 18)}}的其他基金
半無限旗多様体の同変 K-群とアフィン量子群のレベル・ゼロ表現の研究
半无限旗流形等变K群和仿射量子群的零级表示研究
- 批准号:
21K03198 - 财政年份:2021
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
generalized Kac-Moodyリ-環と、関連する保型形式の研究
广义Kac-Moody环及相关自同构形式的研究
- 批准号:
11740004 - 财政年份:1999
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
generalized Kac-Moody algebraの構造と表現の研究
广义Kac-Moody代数的结构与表达式研究
- 批准号:
09740005 - 财政年份:1997
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
generalized Kac-Moody algebraの表現の研究
广义Kac-Moody代数表达式的研究
- 批准号:
08740006 - 财政年份:1996
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
generalized Kac-Moody algebra の表現論の研究
广义Kac-Moody代数表示论研究
- 批准号:
07740015 - 财政年份:1995
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
Kac-Moodyリー環とその表現の研究
Kac-Moody 李环及其表示的研究
- 批准号:
05740015 - 财政年份:1993
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
多様体に付随するリー超代数のホモロジー群研究
流形上李超代数的同调群研究
- 批准号:
22K03306 - 财政年份:2022
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ねじれ(コ)ホモロジー群の超幾何関数への応用
扭转(共)同调群在超几何函数中的应用
- 批准号:
06221261 - 财政年份:1994
- 资助金额:
$ 0.58万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas