三次元多様体の位相不変量と幾何

三维流形的拓扑不变量和几何

基本信息

  • 批准号:
    06740066
  • 负责人:
  • 金额:
    $ 0.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1994
  • 资助国家:
    日本
  • 起止时间:
    1994 至 1995
  • 项目状态:
    已结题

项目摘要

今年度の研究により次のような結果が得られた.1.三次元多様体のHG-complexityと結び目のトンネル数の超加法性について一般に2次元トーラスを境界に持つコンパクト三次元多様体に対して,HG-complexityと呼ばれる,numericalな不変量を定義し,これを用いてトンネル数が連結和に関して超加法性になるような結び目の新しい例を見つけた.2.結び目のcanonical genusについて.古典的結び目Kに対しては種数(genus)と呼ばれるnumericalな不変量g(K)が定まるが,これとは別にfree genusと呼ばれる不変量g_f(K)が定まり,一般に不等式g(K)≦g_f(K)が成立することが知られている.最近大阪市大の河内は結び目Kのcanonical genus g_c(K)と呼ばれる量を提案しており,これについては不等式g(K)≦g_f(K)≦g_c(K)の成立することが,その定義から直ちにわかる.今年度大阪市大の小林雅子との共同研究が上記不等式がある結び目Kについて、真に不等号であることを示した.即ち:定理.任意の自然数mに対して次の性質を持つ結び目K_mが存在する.g_c(K)=3m,g_f,g(K)=m.3.結び目のthin positionから定まるタングル分解について.D.Gabaiによって定義された古典的結び目のthin positionと呼ばれる概念が定義されたが,これは三次元多様体の研究で非常に有効な道具であることが多くの数学者によって確認されている.今年度D.Heathとの共同研究で,この結び目のthin positionから本質的球面による極大なタングル分解が定まることを示した.特にこの応用として与えられた結び目のthin positionを見つける為の手法を与えた.
1. HG-complexity of three-dimensional multi-objects and superadditivity of numerical variables. 2. HG-complexity of three-dimensional multi-objects and numerical variables. This is a new example of the use of a cluster of genes to link and relate to hyperadditivity. 2. The canonical genus of a cluster of genes. The classical structure K corresponds to the opposite number (genus) and the numerical quantity g(K), and the general inequality g(K) ≤ g_f (K) holds. Recently, Osaka Onokawachi has proposed a new definition of the canonical genus g_c (K) and the quantity g_f(K). This year, Osaka City Onokobayashi Masako has jointly studied the above inequality and the true inequality. That is: theorem. For any natural number m, the property of the node K_m exists.g_c(K)= 3m, g_f, g (K)=m.3. The thin position of the node K_m exists.D.Gabai defines the classical thin position of the node K_m. This year D.Heath's joint research shows that the thin position of the junction and the thin position of the object change from the essential sphere to the maximal decomposition of the object. The thin position of the eye is the same as the thin position of the eye.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

小林 毅其他文献

植物成長促進剤である酢酸コリンを処理したシロイヌナズナにおいて早期に発現変動する遺伝子の解析
经醋酸胆碱(一种植物生长促进剂)处理的拟南芥中早期表达变化的基因分析
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    神村麻友;小林 毅;蔡 晃植
  • 通讯作者:
    蔡 晃植

小林 毅的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('小林 毅', 18)}}的其他基金

大域構造の空間を基軸とする低次元トポロジーの研究とその応用
基于全局结构空间的低维拓扑研究及其应用
  • 批准号:
    22K03313
  • 财政年份:
    2022
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
絡み目の橋分解の研究
桥梁链接件拆卸研究
  • 批准号:
    12F02018
  • 财政年份:
    2012
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
3次元多様体のデーン手術とヘーガード種数
Dehn 手术和 3 流形的 Hegard 属
  • 批准号:
    00F00024
  • 财政年份:
    2001
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
低次元多様体の組合せ的構造の研究
低维流形的组合结构研究
  • 批准号:
    07640114
  • 财政年份:
    1995
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
イヌに対する動揺病誘発時のホルモン動態と抗動揺病薬の影響
犬晕动病诱导过程中激素动态和抗晕动病药物的作用
  • 批准号:
    04771309
  • 财政年份:
    1992
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
動揺病モデル(イヌ)によるホルモン動態と自律神経系の関与に関する研究
使用晕动病模型(狗)研究激素动态和自主神经系统的参与
  • 批准号:
    03771187
  • 财政年份:
    1991
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
低次元多様体の構造と結び目理論
低维流形的结构和结理论
  • 批准号:
    01740039
  • 财政年份:
    1989
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
三次元多様体の幾何学
三维流形的几何
  • 批准号:
    62740036
  • 财政年份:
    1987
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

Thompson群を用いた結び目理論の研究
使用汤普森群研究纽结理论
  • 批准号:
    24KJ0144
  • 财政年份:
    2024
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
基本群とカンドルを用いた結び目接触ホモロジーの研究
使用基本群和烛线研究结接触同源性
  • 批准号:
    24K06732
  • 财政年份:
    2024
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
結び目と3次元多様体の不変量
结和 3 流形的不变量
  • 批准号:
    24KJ1326
  • 财政年份:
    2024
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
結び目のトポロジーとその高分子科学への応用の研究
结拓扑研究及其在高分子科学中的应用
  • 批准号:
    23K20791
  • 财政年份:
    2024
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
結び目の色付きジョーンズ多項式の漸近挙動と幾何構造
结中彩色琼斯多项式的渐近行为和几何结构
  • 批准号:
    24K06702
  • 财政年份:
    2024
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
4次元多様体の微分構造と結び目への応用
4维流形的微分结构及其在结中的应用
  • 批准号:
    23K03090
  • 财政年份:
    2023
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
拡張結び目の構造と不変量の研究
扩展结的结构和不变量的研究
  • 批准号:
    23K03118
  • 财政年份:
    2023
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
曲面結び目のプラット表示に関する分類問題とその応用
弯曲结平面表示的分类问题及其应用
  • 批准号:
    22KJ2189
  • 财政年份:
    2023
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
結び目理論を用いた渦のトポロジーの研究
利用结理论研究涡旋拓扑
  • 批准号:
    23K17652
  • 财政年份:
    2023
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
カンドルと対称空間の観点からの結び目の不変量の研究
坦诚空间和对称空间视角下的结不变量研究
  • 批准号:
    22KJ2084
  • 财政年份:
    2023
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了