HUMAN FACTORS OF THE OPERATOR'S WORK-ABILITY AFFECTED BY AUTOMATIC SYSTEM OF FARM MACHINERY

农机自动化系统操作人员工作能力的人为因素

基本信息

  • 批准号:
    07660333
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1997
  • 项目状态:
    已结题

项目摘要

As the automation or robotics for farm machinery takes aim to create high-output work ability and to depress the crop production cost, the farm-work use with them are conducted on very high speed at the large asperity, uneven field. On the system, the operating person interacting with the machine, such as to view the work result at field or information display of the machine, to decide better performance operation, and to operate several controls of the machine. So that the operator is enforced quickly view, decision and handling the machine in the high-speed work condition.The rate of point dispersion of the operator's view should be related to the hurt or sensuous fatigue of the operator. The 'eye mark recorder' was useful to measure the view point dispersion of vehicle operator. But the instrument can not work in open air, because of the infrared radiation of it is deranged by solar radiation. Then a small video camera and recorder was useful to measure the dispersion of farm implement operator in the open air. The result of the view point dispersion of automated farm machinery work shows that the operator conducts within himself on good condition, but on bad condition he could not keep hurt or sensuous allowance.At the farm work contracto, the operators of their machine which run high speed work every day, the continuous vibration of seat is big problem for three reasons : people don't like it, it damages his body and it has bad effect on working efficiency.The results of studies shows that the work condition with the automated machinery turn of the situation for the worse, so that the ergonomics or man-machine studies of them are emergent necessary study for future advance.
由于农业机械的自动化或机器人技术的目的是创造高产量的劳动能力,降低作物的生产成本,因此它们的农业劳动使用在大的崎岖不平的土地上以非常高的速度进行。在系统上,操作人员与机器进行交互,如在现场查看机器的工作结果或信息显示,决定更好的性能操作,操作机器的几个控制。使操作人员能够在高速工作状态下快速查看、决策和处理机器。操作人员视点的分散率应与操作人员的受伤或感官疲劳程度有关。“眼标记录仪”可用于测量车辆驾驶员的视点离散度。但由于红外辐射受到太阳辐射的干扰,仪器不能在露天工作。然后用小型摄像机和记录仪测量农机具操作人员在露天的分散情况。自动化农业机械作业的视点分散结果表明,操作人员在良好状态下进行作业,但在恶劣状态下,他不能保持伤害或感官津贴。在农场承包中,他们的机器每天都在高速运转,座椅的持续振动是一个大问题,原因有三个:人们不喜欢它,它损害了他的身体,它对工作效率有不好的影响。研究结果表明,随着自动化机械的发展,工作条件的变化情况越来越严重,因此对其进行工效学或人机研究是今后发展的迫切需要的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKAI Munehiro其他文献

TAKAI Munehiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKAI Munehiro', 18)}}的其他基金

The Developments of A Tractor Universal Control Monitor
拖拉机通用控制显示器的研制
  • 批准号:
    04660262
  • 财政年份:
    1992
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Studies on the Computer Control Technic for Farm Tractor's Implement.
农用拖拉机机具计算机控制技术的研究。
  • 批准号:
    62560241
  • 财政年份:
    1987
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

A novel automated machine learning platform for predictive yield optimisation and real time tracking and tracing.
一种新颖的自动化机器学习平台,用于预测产量优化和实时跟踪和追踪。
  • 批准号:
    10064479
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Collaborative R&D
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
  • 批准号:
    10699828
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
An automated machine learning approach to language changes in Alzheimer’s disease and frontotemporal dementia across Latino and English-speaking populations
一种针对拉丁裔和英语人群中阿尔茨海默病和额颞叶痴呆的语言变化的自动化机器学习方法
  • 批准号:
    10662053
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
Automated Machine Learning-Based Brain Artery Segmentation, Anatomical Prior Labeling, and Feature Extraction on MR Angiography
基于自动机器学习的脑动脉分割、解剖先验标记和 MR 血管造影特征提取
  • 批准号:
    10759721
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
Automated Machine Learning for Electrocardiogram Disease Classification
用于心电图疾病分类的自动机器学习
  • 批准号:
    559616-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Accelerating biological discovery with automated machine learning for single-cell data analysis
通过用于单细胞数据分析的自动化机器学习加速生物发现
  • 批准号:
    RGPIN-2020-04083
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Discovery Grants Program - Individual
Improving efficiency and sustainability of automated machine learning
提高自动化机器学习的效率和可持续性
  • 批准号:
    2786001
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Studentship
Automated Machine Learning for Electrocardiogram Disease Classification
用于心电图疾病分类的自动机器学习
  • 批准号:
    559616-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Accelerating biological discovery with automated machine learning for single-cell data analysis
通过用于单细胞数据分析的自动化机器学习加速生物发现
  • 批准号:
    RGPIN-2020-04083
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: CISE-ANR: CNS Core: Small: Modeling Modern Network Traffic: From Data Representation to Automated Machine Learning
合作研究:CISE-ANR:CNS 核心:小型:现代网络流量建模:从数据表示到自动化机器学习
  • 批准号:
    2124393
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了