A study on efficient algorithms for nonlinear nonconvex network programming problems

非线性非凸网络规划问题的高效算法研究

基本信息

  • 批准号:
    07680447
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1995
  • 资助国家:
    日本
  • 起止时间:
    1995 至 1996
  • 项目状态:
    已结题

项目摘要

In this research, we studied certain classes of nonconvex cost network flow problems and proposed efficient algorithms for generating globally optimal solutions. A few of the results are listed below :1 In the usual two-terminal network, we proposed a method for minimizing the total transportation cost and for simultaneously maximizing the total flow. To accomplish it, we optimized the product of these two values and showed that a successive shortest path algorithm yields a globally optimal solution in pseudo-polynomial time and an epsilon-optimal solution in polynomial time.2 We developed pseudo-polynomial algorithm to solve a production-transportation problem equivalent to the capacitated minimum concave cost flow problems with at most three nonlinear variables. The algorithm consists of two phases : the first phase generates a feasible solution ; starting from it, the second phase searches for a globally optimal solution in the same way as solving a minimum linear-cost flow problem3 We extended the idea used to solve the problem in 2 and solved a maximum flow problem with an additional reverse convex constraint in pseudo-polynomial time. We first applied a binary search procedure to generate a candidate for an optimal solution, and then checked its globally optimality using the algorithm similar to the one in 2.All the above mentioned algorithms were designed by exploiting low-rank (quasi) concavity possessed by the problems, and were shown to be efficient in both practical and theoretical senses. We generalized this special problem structure and obtained the following result :4 We showed that a multiple convex objective program can be reduced to a single nonconvex objective program, and developed an outer approximation algorithm for generating a globally optimal solution. Computational experiments indicated that the algorithm is practically efficient when the number of objectives is less than five.
在本研究中,我们研究了某些类别的非凸费用网络流问题,并提出了有效的算法产生全局最优解。主要结果如下:1在通常的两端点网络中,我们提出了一种使总运输费用最小化,同时使总流量最大化的方法。为了实现这一目标,我们优化了这两个值的乘积,并证明了连续最短路径算法在伪多项式时间内产生全局最优解,在多项式时间内产生ε最优解。2我们开发了伪多项式算法来解决一个生产运输问题,该问题等价于至多三个非线性变量的能力约束最小凹成本流问题。该算法包括两个阶段:第一阶段产生一个可行的解决方案,从它开始,第二阶段寻找一个全局最优的解决方案,以同样的方式解决一个最小的线性费用流问题3我们扩展的思想用于解决问题2,并解决了一个最大流问题与一个额外的反向凸约束在伪多项式时间。我们首先采用二分搜索的方法产生一个候选最优解,然后用类似于[2]的算法检验其全局最优性。上述算法都是利用问题的低秩(拟)秩设计的,在理论和实践上都是有效的。我们推广了这一特殊的问题结构,得到了如下结果:4证明了多凸目标规划可以化为单非凸目标规划,并给出了一个产生全局最优解的外逼近算法。计算实验表明,当目标数小于5时,该算法是有效的。

项目成果

期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Takahito Kuno: "A variant of the outer approximation method for globally minimizing a class of composite functions" Journal of the Operations Research Society of Japan. (掲載予定). (1997)
Takahito Kuno:“全局最小化一类复合函数的外近似方法”,日本运筹学会杂志(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takahito Kuno: "A Parametric Approach for Maximum Flow Problems with an Additional Reverse Convex Constraint" ISE Technical Report, Inst. Information Sciences & Electronics, Univ. Tsukuba. 95-128. 1-16 (1995)
Takahito Kuno:“带有附加反向凸约束的最大流量问题的参数化方法”ISE 技术报告,Inst。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takahito Kuno: "A pseudo-polynomial primal-dual algorithm for globally solving a production-transportation problem" in Journal of Global Optimization. (to appear). (1997)
Takahito Kuno:《全局优化杂志》中的“用于全局解决生产运输问题的伪多项式原始对偶算法”。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takahito Kuno: "A variant of the outer approximation method for globally minimizing a class of composite functions" in Journal of the Operations Research Society of Japan. (to appear). (1997)
Takahito Kuno:“用于全局最小化一类复合函数的外近似方法的变体”,《日本运筹学会杂志》。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takahito Kuno: "A pseudo-polynomial primal-dual algorithm for globally solving a production-transportation problem" Journal of Global Optimizaion. (掲載予定). (1997)
Takahito Kuno:“用于全局解决生产运输问题的伪多项式原始对偶算法”《全局优化杂志》(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KUNO Takahito其他文献

KUNO Takahito的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KUNO Takahito', 18)}}的其他基金

Developing deterministic algorithms for solving virtually all nonlinear optimization problems
开发确定性算法来解决几乎所有非线性优化问题
  • 批准号:
    22651057
  • 财政年份:
    2010
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Global Optimization of Mixed Integer Programming Problems via Continuous Programming and Its Applications to Information Technology
连续规划混合整数规划问题的全局优化及其在信息技术中的应用
  • 批准号:
    20310082
  • 财政年份:
    2008
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A study on global/heuristic algorithm for nonlinear nonconvex programming problems
非线性非凸规划问题的全局/启发式算法研究
  • 批准号:
    15560048
  • 财政年份:
    2003
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A unified approach to nonconvex programming problems using branch-and-bound algorithms
使用分支定界算法解决非凸规划问题的统一方法
  • 批准号:
    13680505
  • 财政年份:
    2001
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on global optimization algorithms for multiplicative programming problems
乘法规划问题的全局优化算法研究
  • 批准号:
    11650064
  • 财政年份:
    1999
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on efficient algorithms for multiple objective optimization prob-lems
多目标优化问题的高效算法研究
  • 批准号:
    09680413
  • 财政年份:
    1997
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Research on Practical Algorithms for Geometrical Optimization Problems with Nonconvex Structure
非凸结构几何优化问题实用算法研究
  • 批准号:
    05650061
  • 财政年份:
    1993
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Riemannian Fixed Point Optimization Algorithm and Its Application to Machine Learning
黎曼不动点优化算法及其在机器学习中的应用
  • 批准号:
    21K11773
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Nursing Workforce Optimization Algorithm and Software
SBIR 第一阶段:护理人员优化算法和软件
  • 批准号:
    2052208
  • 财政年份:
    2021
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Optimization algorithm for nonvolatile FPGA and its CAD tool implementation
非易失性FPGA优化算法及其CAD工具实现
  • 批准号:
    20K11725
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Implementation of the Ant Colony Optimization Algorithm for the development of short-scales for determinants of health behavior
实施蚁群优化算法来开发健康行为决定因素的短尺度
  • 批准号:
    431064501
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Research Grants
High-Performance Optimization Algorithm based on Machine Learning and Search
基于机器学习和搜索的高性能优化算法
  • 批准号:
    20H04251
  • 财政年份:
    2020
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Nonlinear non-convex optimization algorithm design for robust transceiver optimization in multi-user multi-antenna cloud radio access networks
用于多用户多天线云无线接入网络中鲁棒收发器优化的非线性非凸优化算法设计
  • 批准号:
    517334-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Postdoctoral Fellowships
Online system optimization algorithm development for building energy management
建筑能源管理在线系统优化算法开发
  • 批准号:
    538475-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Engage Plus Grants Program
Development of optimization algorithm for agrivoltaics system and cropping type
农业光伏系统和种植类型优化算法的开发
  • 批准号:
    19K06338
  • 财政年份:
    2019
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advanced cooling system optimization algorithm development for building energy management
用于建筑能源管理的先进冷却系统优化算法开发
  • 批准号:
    530280-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Engage Grants Program
Stochastic Fixed Point Optimization Algorithm and Its Application to Ensemble Learning
随机不动点优化算法及其在集成学习中的应用
  • 批准号:
    18K11184
  • 财政年份:
    2018
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了