A unified approach to nonconvex programming problems using branch-and-bound algorithms

使用分支定界算法解决非凸规划问题的统一方法

基本信息

  • 批准号:
    13680505
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2002
  • 项目状态:
    已结题

项目摘要

We made a study mainly on three classes of nonconvex optimization problems, each of which is abundant in applications to real-world social systems :(1) In almost every optimization problem, both objective and constraint functions can be written as the difference of two convex functions. Using this property, the problem can be trans-formed into a convex minimization problem with an additional reverse convex constraint. We proposed three branch-and-bound algorithms for solving this kind of nonconvex optimization problems. We showed that each algorithm generates a globally optimal solution in finite iterations if the reverse convex constraint function is separable.(2) The sum-of-ratios problem is a problem, of minimizing a sum of linear rations over a convex set, and is known to be intractable. We devised an inexpensive procedure for computing a tignt lower bound on the optical value. We incorporated it into a branch-and-bound algorithm and succeeded in solving the problem much faster than the existing algorithms.(3) Many of chemical process design problems can be formulated as optimization problems but highly nonconvex ones, say mixed-integer nonlinear programming problems. To solve this kind of problems, we proposed a hybrid algorithm of brand-and-bound and revised general benders decomposition methods. We then proved that the algorithm certainly converges to globally optimal solutions for some typical chemical process design problems.Each of the proposed algorithms is based on the idea of branch and bound. To execute the bounding operations efficiently, we also studied an interior-point algorithm for solving relaxed problems.
本文主要研究了三类非凸优化问题,它们在现实社会系统中有着丰富的应用:(1)在几乎所有的优化问题中,目标函数和约束函数都可以表示为两个凸函数的差。利用这一性质,问题可以转化为一个凸极小化问题与一个额外的反凸约束。我们提出了三个分支定界算法来解决这类非凸优化问题。我们表明,每个算法生成一个全局最优解在有限的迭代,如果反向凸约束函数是可分离的。(2)比率和问题是一个在凸集上最小化线性比率和的问题,并且已知是难以处理的。我们设计了一个廉价的程序来计算光学值的一个严格的下限。我们将其纳入一个分支定界算法,并成功地解决了这个问题比现有的算法快得多。(3)许多化工过程设计问题都可以转化为优化问题,但都是高度非凸的问题,如混合整数非线性规划问题。针对这类问题,提出了一种结合品牌定界法和修正的广义Benders分解法的混合算法。对一些典型的化工过程设计问题,证明了算法的全局最优性,所提出的算法都是基于分支定界的思想。为了有效地执行定界操作,我们还研究了一种求解松弛问题的邻域点算法。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Kuno: "A finite algorithm for separable reverse convex programs"ICOTA2001 Proceedings. 2. 608-609 (2001)
T.Kuno:“可分离逆凸程序的有限算法”ICOTA2001 论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takahito Kuno: "A finite Algorithm for Separable Reverse Convex Programs"ICOTA2001 Proceedings. 2. 608-609 (2001)
Takahito Kuno:“可分离逆凸规划的有限算法”ICOTA2001 论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Zhu, T.Kuno: "Global optimization of nonconvex MILP by a hybrid brance-and-bound and revised general Benders decomposition approach"Industrial and Engineering Chemistry Research. 42. 528-539 (2003)
Y.Zhu、T.Kuno:“通过混合支键和修订的通用 Benders 分解方法对非凸 MILP 进行全局优化”工业和工程化学研究。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yashan Zhu, Takahito Kuno: "Global Optimization of Nonconvex MILP by a Hybrid Branch-and-Bound and Revised General Benders Decomposition"Industrial and Engineering Chemistry Research. 42. 528-539 (2003)
朱亚山、久野隆仁:“通过混合分支定界和修订的通用 Benders 分解对非凸 MILP 进行全局优化”工业和工程化学研究。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Kuno and J. Shi: "Linear programs with an additional separable concave constraint"ISE Technical Report. 181. 1-25 (2001)
T. Kuno 和 J. Shi:“具有附加可分离凹约束的线性程序”ISE 技术报告。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KUNO Takahito其他文献

KUNO Takahito的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KUNO Takahito', 18)}}的其他基金

Developing deterministic algorithms for solving virtually all nonlinear optimization problems
开发确定性算法来解决几乎所有非线性优化问题
  • 批准号:
    22651057
  • 财政年份:
    2010
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Global Optimization of Mixed Integer Programming Problems via Continuous Programming and Its Applications to Information Technology
连续规划混合整数规划问题的全局优化及其在信息技术中的应用
  • 批准号:
    20310082
  • 财政年份:
    2008
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A study on global/heuristic algorithm for nonlinear nonconvex programming problems
非线性非凸规划问题的全局/启发式算法研究
  • 批准号:
    15560048
  • 财政年份:
    2003
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on global optimization algorithms for multiplicative programming problems
乘法规划问题的全局优化算法研究
  • 批准号:
    11650064
  • 财政年份:
    1999
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on efficient algorithms for multiple objective optimization prob-lems
多目标优化问题的高效算法研究
  • 批准号:
    09680413
  • 财政年份:
    1997
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on efficient algorithms for nonlinear nonconvex network programming problems
非线性非凸网络规划问题的高效算法研究
  • 批准号:
    07680447
  • 财政年份:
    1995
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Research on Practical Algorithms for Geometrical Optimization Problems with Nonconvex Structure
非凸结构几何优化问题实用算法研究
  • 批准号:
    05650061
  • 财政年份:
    1993
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了