A Research on Practical Algorithms for Geometrical Optimization Problems with Nonconvex Structure
非凸结构几何优化问题实用算法研究
基本信息
- 批准号:05650061
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for General Scientific Research (C)
- 财政年份:1993
- 资助国家:日本
- 起止时间:1993 至 1994
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research, we studied some practical algorithme for solving certain classes of geometrical optimization problems with nonconvex structure. We applied global optimization techniques to the problems in the plane and constructed some algorithms for obtaining a globally optimal solution. A few of the results are as follows :1.Globally optimization of rank-two reverse convex programs : We proposed an algorithm for solving reverse convex program which contains a quasiconcave constraint function defined by two linearly independent n-dimensional vectors. The computational experiments indicated that the algorithm can generate globally optimal solutions very efficiently compared with any existing algorithms.2.Globally minimization of rank-two saddle functions on a polytope : We proposed an algorithm for minimizing a composite function of a two-dimensional saddle function and n-dimensional affine functions. The computational experiments indicated that the algorithm solves fairly large scale problems.In addition to the above problems, we studied a class of nonconvex network optimization problems. To solve the problems efficiently, we used computational geometry as some procedures of the algorithm. As a result, we obtained the following :3.Globally optimization of production-transportation problems : We proposed a pseudopolynomial-time algorithm for solving a class of production-transportation problem.All the above mentioned algorithms decompose a given problem into several convex subproblems. This solution strategy can also be applied to many other classes of optimization problems.
本文研究了几类具有非凸结构的几何优化问题的实用算法。我们将全局优化技术应用到平面问题中,并构造了一些获得全局最优解的算法。1.二阶反凸规划的全局优化:提出了一种求解含有由两个线性无关的n维向量定义的拟凹约束函数的反凸规划的算法。计算实验表明,与现有的算法相比,该算法能够非常有效地生成全局最优解。2.多面体上秩为2的鞍函数的全局极小化:提出了一种求解二维鞍函数和n维仿射函数的复合函数的全局极小化算法。计算实验表明,该算法可以解决相当大规模的问题。除上述问题外,我们还研究了一类非凸网络优化问题。为了有效地解决问题,我们使用计算几何作为算法的一些程序。3.生产-运输问题的全局优化:提出了求解一类生产-运输问题的伪多项式时间算法,上述算法都是将一个问题分解为若干个凸子问题。这种求解策略也可以应用于许多其他类型的优化问题。
项目成果
期刊论文数量(38)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hiroshi Konno: "Multiplicative programming" Kluwer Accademic Publishers(Handbook of Global Optimizationに掲載予定),
Hiroshi Konno:“乘法编程”Kluwer 学术出版社(将在《全局优化手册》中出版),
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Kuno: ""A decomposition algorithm for solving certain classes of production-transportation problems, "" ISE Report 94-113 (Inst.of Information Sciences & Electronics, Univ.of Tsukuba). (1994)
T.Kuno:“用于解决某些类别的生产运输问题的分解算法”,ISE 报告 94-113(信息科学学院)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takahito Kuno: "A practical algorithm for minimizing a rank-two saddle function on a polytope" Journal of the Operations Research Society of Japan. (掲載予定)(印刷中). (1995)
Takahito Kuno:“一种用于最小化多面体上的二阶鞍函数的实用算法”,日本运筹学会杂志(待出版)(1995 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takahito Kuno: "Parametric methods for solving low-rank reverse convex programs" 第6回RAMP(数理計画法研究会)シンポジウム論文集. 45-56 (1994)
Takahito Kuno:“求解低秩逆凸规划的参数方法”第六届 RAMP(数学规划研究组)研讨会论文集 45-56(1994 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroshi Konno: ""Multiplicative programming problems"in Handbook of Global Optimization" Kluwer Accademic Publishers, 37 (1994)
Hiroshi Konno:“全局优化手册中的“乘法规划问题””Kluwer Accademic Publishers,37(1994)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KUNO Takahito其他文献
KUNO Takahito的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KUNO Takahito', 18)}}的其他基金
Developing deterministic algorithms for solving virtually all nonlinear optimization problems
开发确定性算法来解决几乎所有非线性优化问题
- 批准号:
22651057 - 财政年份:2010
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Global Optimization of Mixed Integer Programming Problems via Continuous Programming and Its Applications to Information Technology
连续规划混合整数规划问题的全局优化及其在信息技术中的应用
- 批准号:
20310082 - 财政年份:2008
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A study on global/heuristic algorithm for nonlinear nonconvex programming problems
非线性非凸规划问题的全局/启发式算法研究
- 批准号:
15560048 - 财政年份:2003
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A unified approach to nonconvex programming problems using branch-and-bound algorithms
使用分支定界算法解决非凸规划问题的统一方法
- 批准号:
13680505 - 财政年份:2001
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on global optimization algorithms for multiplicative programming problems
乘法规划问题的全局优化算法研究
- 批准号:
11650064 - 财政年份:1999
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on efficient algorithms for multiple objective optimization prob-lems
多目标优化问题的高效算法研究
- 批准号:
09680413 - 财政年份:1997
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on efficient algorithms for nonlinear nonconvex network programming problems
非线性非凸网络规划问题的高效算法研究
- 批准号:
07680447 - 财政年份:1995
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Scalable Algorithms for Deterministic Global Optimization With Parallel Architectures
使用并行架构实现确定性全局优化的可扩展算法
- 批准号:
2330054 - 财政年份:2024
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
CAREER: Advancing Efficient Global Optimization of Extremely Expensive Functions under Uncertainty using Structure-Exploiting Bayesian Methods
职业:使用结构利用贝叶斯方法在不确定性下推进极其昂贵的函数的高效全局优化
- 批准号:
2237616 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Continuing Grant
GRASP Conic relaxations: scalable and accurate global optimization beyond polynomials
掌握圆锥松弛:超越多项式的可扩展且准确的全局优化
- 批准号:
EP/X032051/1 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Research Grant
NOVEL DECOMPOSITION ALGORITHMS FOR GUARANTEED GLOBAL OPTIMIZATION OF LARGE-SCALE NONCONVEX STOCHASTIC PROGRAMS
确保大规模非凸随机程序全局优化的新颖分解算法
- 批准号:
2232588 - 财政年份:2023
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Global optimization of anisotropy in antiferromagnets
反铁磁体各向异性的全局优化
- 批准号:
2740295 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Studentship
Improving global optimization methods for dynamic process models
改进动态过程模型的全局优化方法
- 批准号:
RGPIN-2017-05944 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Novel Modelling and Global Optimization Techniques for the Design and Operation of Microgrids
用于微电网设计和运行的新颖建模和全局优化技术
- 批准号:
546941-2020 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
RUI: Global Optimization of Chance-Constrained Programming for Reliable Process Design
RUI:机会约束编程的全局优化,实现可靠的流程设计
- 批准号:
2151497 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Standard Grant
Implementing and testing new bounding methods for use in global optimization
实现和测试用于全局优化的新边界方法
- 批准号:
573946-2022 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
University Undergraduate Student Research Awards
Selection-based Metaheuristics for Large Scale Global Optimization
用于大规模全局优化的基于选择的元启发法
- 批准号:
RGPIN-2022-04524 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual