A study on global optimization algorithms for multiplicative programming problems
乘法规划问题的全局优化算法研究
基本信息
- 批准号:11650064
- 负责人:
- 金额:$ 1.47万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research, we studied practical algorithms for solving multiplicative programming problems, a class of optimization problems involving products of some convex functions. Although this class is known as a typical multi-extremal global optimization problem, we showed that it is possible to design efficient algorithms both in theoretical and practical senses, by exploiting its special structures. A few of the results are listed below :1 We studied a problem maximizing a single linear function over an efficient set. This problem is associated with multi-criteria decision making and belongs to multi-extremal global optimization. When the number of criteria is up to three, we showed that the problem can be solved efficiently in the same way as the low-rank linear multiplicative programming problem.2 We developed a finite branch-and-bound algorithm for minimizing a product of several affine functions over a polyhedral set. Since the logarithm of the objective function is separable into … More a sum of concave functions, we use this special structure and propose a rectangular branch-and-bound algorithm. We carried out bounding operations in two stages to strengthen the lower bound. The computational result indicated that the algorithm is remarkably efficient.3 The sum-of-linear-ratio problem is an important subclass of multiplicative programming problems. We developed a rectangular branch-and-bound algorithm for solving this problem. Since the number of ratios is less than ten in most applications, we carried out branching operations in the vector space of ratios. As a result, we could obtain globally optimal solutions much efficiently than using the existing algorithms.4 When using the branch-and-bound algorithm to solve multiplicative programming problems, we need to solve linear and/or quadratic programming problems iteratively. Therefore, the procedure for linear and/or quadratic programming problems seriously affects on the efficiency of the algorithm. We then studied some iterative algorithms for the linear complementarity problem, the class of these problems, and showed their worst-case computational complexity. Less
在这项研究中,我们研究了解决乘法规划问题的实用算法,乘法规划问题是一类涉及某些凸函数乘积的优化问题。尽管此类被称为典型的多极值全局优化问题,但我们表明,通过利用其特殊结构,可以在理论和实践意义上设计有效的算法。下面列出了一些结果:1 我们研究了在有效集合上最大化单个线性函数的问题。该问题与多准则决策相关,属于多极值全局优化。当标准数量达到三个时,我们表明可以采用与低秩线性乘法规划问题相同的方式有效地解决该问题。2我们开发了一种有限分支定界算法,用于最小化多面体集合上多个仿射函数的乘积。由于目标函数的对数可分解为凹函数之和,因此我们使用这种特殊结构并提出了矩形分支定界算法。我们分两个阶段进行了边界操作,以强化下界。计算结果表明该算法非常高效。3线性比和问题是乘法规划问题的一个重要子类。我们开发了一种矩形分支定界算法来解决这个问题。由于大多数应用中比率的数量少于十个,因此我们在比率向量空间中进行分支操作。因此,我们可以比使用现有算法更有效地获得全局最优解。4当使用分支定界算法解决乘法规划问题时,我们需要迭代地解决线性和/或二次规划问题。因此,线性和/或二次规划问题的处理过程严重影响算法的效率。然后,我们研究了线性互补问题的一些迭代算法、这些问题的类别,并展示了它们最坏情况的计算复杂度。较少的
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Takahito Kuno: "A finite branch-and-bound algorithm for linear multiplicative programming"Computational Optimization and Applications. (to appear).
Takahito Kuno:“线性乘法规划的有限分支定界算法”计算优化和应用。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Ishii,T.Kuno: "A finite pivoting algorithm for minimizing a single criterion over the efficient set"ISE Technical Report. 99・161. 1-14 (1999)
T.Ishii,T.Kuno:“用于最小化有效集上的单个标准的有限枢轴算法”ISE 技术报告 99・161(1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Takeshi Ishii: "A finite pivoting algorithm for minimizing a single criterion over the tricriteria efficient set"Technical Report (Inst.of Information Sciences and Electronics, Univ.of Tsukuba). ISE-TR-99-161. 1-14 (1999)
Takeshi Ishii:“一种用于最小化三标准有效集上的单一标准的有限旋转算法”技术报告(筑波大学信息科学与电子研究所)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
久野誉人: "A branch-and-bound algorith for maximizing the sum of several linear ratios"筑波大学電子・情報工学系テクニカルレポートシリーズ. 00-175. 1-17 (2000)
Yoshito Kuno:“用于最大化多个线性比率之和的分支定界算法”筑波大学电子与信息工程系技术报告系列 00-175(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Keisuke Hotta: "A complexity bound of a predictor-corrector smoothing method using CHKS-functions for monotone LCP"筑波大学社会工学系ディスカッションペーパーシリーズ. 873. 1-17 (2000)
Keisuke Hotta:“使用单调 LCP 的 CHKS 函数的预测校正平滑方法的复杂性界限”筑波大学社会工程系讨论论文系列 873. 1-17 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KUNO Takahito其他文献
KUNO Takahito的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KUNO Takahito', 18)}}的其他基金
Developing deterministic algorithms for solving virtually all nonlinear optimization problems
开发确定性算法来解决几乎所有非线性优化问题
- 批准号:
22651057 - 财政年份:2010
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Global Optimization of Mixed Integer Programming Problems via Continuous Programming and Its Applications to Information Technology
连续规划混合整数规划问题的全局优化及其在信息技术中的应用
- 批准号:
20310082 - 财政年份:2008
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A study on global/heuristic algorithm for nonlinear nonconvex programming problems
非线性非凸规划问题的全局/启发式算法研究
- 批准号:
15560048 - 财政年份:2003
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A unified approach to nonconvex programming problems using branch-and-bound algorithms
使用分支定界算法解决非凸规划问题的统一方法
- 批准号:
13680505 - 财政年份:2001
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on efficient algorithms for multiple objective optimization prob-lems
多目标优化问题的高效算法研究
- 批准号:
09680413 - 财政年份:1997
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on efficient algorithms for nonlinear nonconvex network programming problems
非线性非凸网络规划问题的高效算法研究
- 批准号:
07680447 - 财政年份:1995
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Research on Practical Algorithms for Geometrical Optimization Problems with Nonconvex Structure
非凸结构几何优化问题实用算法研究
- 批准号:
05650061 - 财政年份:1993
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Riemannian Fixed Point Optimization Algorithm and Its Application to Machine Learning
黎曼不动点优化算法及其在机器学习中的应用
- 批准号:
21K11773 - 财政年份:2021
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Nursing Workforce Optimization Algorithm and Software
SBIR 第一阶段:护理人员优化算法和软件
- 批准号:
2052208 - 财政年份:2021
- 资助金额:
$ 1.47万 - 项目类别:
Standard Grant
Optimization algorithm for nonvolatile FPGA and its CAD tool implementation
非易失性FPGA优化算法及其CAD工具实现
- 批准号:
20K11725 - 财政年份:2020
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Implementation of the Ant Colony Optimization Algorithm for the development of short-scales for determinants of health behavior
实施蚁群优化算法来开发健康行为决定因素的短尺度
- 批准号:
431064501 - 财政年份:2020
- 资助金额:
$ 1.47万 - 项目类别:
Research Grants
High-Performance Optimization Algorithm based on Machine Learning and Search
基于机器学习和搜索的高性能优化算法
- 批准号:
20H04251 - 财政年份:2020
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nonlinear non-convex optimization algorithm design for robust transceiver optimization in multi-user multi-antenna cloud radio access networks
用于多用户多天线云无线接入网络中鲁棒收发器优化的非线性非凸优化算法设计
- 批准号:
517334-2018 - 财政年份:2019
- 资助金额:
$ 1.47万 - 项目类别:
Postdoctoral Fellowships
Online system optimization algorithm development for building energy management
建筑能源管理在线系统优化算法开发
- 批准号:
538475-2019 - 财政年份:2019
- 资助金额:
$ 1.47万 - 项目类别:
Engage Plus Grants Program
Development of optimization algorithm for agrivoltaics system and cropping type
农业光伏系统和种植类型优化算法的开发
- 批准号:
19K06338 - 财政年份:2019
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advanced cooling system optimization algorithm development for building energy management
用于建筑能源管理的先进冷却系统优化算法开发
- 批准号:
530280-2018 - 财政年份:2018
- 资助金额:
$ 1.47万 - 项目类别:
Engage Grants Program
Stochastic Fixed Point Optimization Algorithm and Its Application to Ensemble Learning
随机不动点优化算法及其在集成学习中的应用
- 批准号:
18K11184 - 财政年份:2018
- 资助金额:
$ 1.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




