A study on efficient algorithms for multiple objective optimization prob-lems

多目标优化问题的高效算法研究

基本信息

  • 批准号:
    09680413
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

In this research. we formulated some classes of multiple objective optimization problems into single objective nonconvex optimization problems and proposed efficient algorithms for generating globally optimal solutions to the resulting problems. A few of the results are listed below :1 We studied a problem constraining the product of two objectives to be less than or equal to a given constant. We developed an algorithm for generating a globally optimal solution within a finite time. The computational results on a workstation indicated that the algorithm is reasonably practical as long as the number of constraints containing the product is less than five.2 We developed a branch-and-bound algorithm to resolve a multi-objective optimization with a 0-1 knapsack constraint. We incorporated a Lagrangian relaxation into the bounding procedure ; but the time taken for bounding is only a lower-order polynomial in the problem size. The algorithm succeeded in solving problems of 20 objectives and … More 120 variables within 20 seconds.3 We investigated the relationship between the multi-objective optimization with a 0-1 knapsack constraint and a production-transportation problem with concave production costs. We then extended the algorithm for the former to the latter network problem. The computational time needed by the algorithm was a few hundreds times less than those by the existing algorithms.4 We studied a bi-objective shortest path problem and developed two strongly polynomial algo- rithms. One is for the case that the utility function of the decision maker is quasi-concave ; and the other is for the case that the utility function is quasi-convex. We showed that both algorithms are directly applicable to in-car navigation systems and so forth.All the above mentioned problems have highly nonconvex but low-rank structures. We showed that, even though the problems belong to a well-known hard class, it is possible to design efficient algorithms both in theoretical and practical senses, by exploiting their special structures. Less
在这项研究中。我们将某些类别的多目标优化问题转化为单目标非凸优化问题,并提出了生成所得到的问题的全局最优解的有效算法。下面列出了一些结果:1我们研究了一个问题,限制两个目标的产品小于或等于一个给定的常数。我们开发了一种算法,用于在有限时间内生成全局最优解。在工作站上的计算结果表明,该算法是合理的实用,只要包含产品的约束的数量小于5。2我们开发了一个分支定界算法来解决多目标优化与0-1背包约束。我们在定界过程中加入了拉格朗日松弛,但定界所需的时间仅是问题大小的低阶多项式。该算法成功地解决了20个目标的问题, ...更多信息 20秒内120个变量。3我们研究了0-1背包约束的多目标优化与凹生产成本的生产运输问题之间的关系。然后,我们将前者的算法扩展到后者的网络问题。该算法所需的计算时间是现有算法的几百倍。4我们研究了一个双目标最短路问题,并提出了两个强多项式算法。一种是针对决策者的效用函数是拟凹的情况,另一种是针对效用函数是拟凸的情况。我们证明了这两种算法都可以直接应用于车载导航系统等问题。上述问题都具有高度非凸的低秩结构。我们表明,即使问题属于一个众所周知的硬类,它是可能的设计有效的算法在理论和实践意义上,通过利用其特殊的结构。少

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Takahito Kuno: ""Polynomial algorithms for a class of minimum rank-two cost path problems"" Journal of Global Optimization (to appear). (1999)
Takahito Kuno:““一类最小二阶成本路径问题的多项式算法””《全局优化杂志》(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takahito Kuno: ""A Lagrangian based branch-and-bound algorithm for production-transportation problems"" Technical Report (Inst.of In-formation Sciences and Elec-tronics, Univ.of Tsukuba). ISE-TR-98-150. 1-15 (1998)
Takahito Kuno:“用于生产运输问题的基于拉格朗日的分支定界算法”技术报告(筑波大学信息科学与电子研究所)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takahito Kuno: ""Nonconvex programs insoluble prob-lems-global optimization using branch and bound meth-ods (in Japanese)"" Communications of the Operations Research So-ciety of Japan (to appear). (1999)
Takahito Kuno:““非凸规划不可解决的问题 - 使用分支定界方法的全局优化(日语)””日本运筹学会通讯(待发表)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
久野誉人: "非凸計画法≠解けない問題-分枝限定法による大域的最適化" オペレーションズ・リサーチ. (発表予定). (1999)
Yoshito Kuno:“非凸规划≠无法解决的问题 - 使用分支定界方法进行全局优化”运筹学(计划演讲)(1999 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Kuno: "Solving a class of multiplicative programs with O-1 knapsack constraints" Journal of Optimization Theory and Applications. (印刷中). (1999)
T.Kuno:“求解具有 O-1 背包约束的一类乘法规划”《优化理论与应用杂志》(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KUNO Takahito其他文献

KUNO Takahito的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KUNO Takahito', 18)}}的其他基金

Developing deterministic algorithms for solving virtually all nonlinear optimization problems
开发确定性算法来解决几乎所有非线性优化问题
  • 批准号:
    22651057
  • 财政年份:
    2010
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Global Optimization of Mixed Integer Programming Problems via Continuous Programming and Its Applications to Information Technology
连续规划混合整数规划问题的全局优化及其在信息技术中的应用
  • 批准号:
    20310082
  • 财政年份:
    2008
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A study on global/heuristic algorithm for nonlinear nonconvex programming problems
非线性非凸规划问题的全局/启发式算法研究
  • 批准号:
    15560048
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A unified approach to nonconvex programming problems using branch-and-bound algorithms
使用分支定界算法解决非凸规划问题的统一方法
  • 批准号:
    13680505
  • 财政年份:
    2001
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on global optimization algorithms for multiplicative programming problems
乘法规划问题的全局优化算法研究
  • 批准号:
    11650064
  • 财政年份:
    1999
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on efficient algorithms for nonlinear nonconvex network programming problems
非线性非凸网络规划问题的高效算法研究
  • 批准号:
    07680447
  • 财政年份:
    1995
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Research on Practical Algorithms for Geometrical Optimization Problems with Nonconvex Structure
非凸结构几何优化问题实用算法研究
  • 批准号:
    05650061
  • 财政年份:
    1993
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Riemannian Fixed Point Optimization Algorithm and Its Application to Machine Learning
黎曼不动点优化算法及其在机器学习中的应用
  • 批准号:
    21K11773
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
SBIR Phase I: Nursing Workforce Optimization Algorithm and Software
SBIR 第一阶段:护理人员优化算法和软件
  • 批准号:
    2052208
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Optimization algorithm for nonvolatile FPGA and its CAD tool implementation
非易失性FPGA优化算法及其CAD工具实现
  • 批准号:
    20K11725
  • 财政年份:
    2020
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Implementation of the Ant Colony Optimization Algorithm for the development of short-scales for determinants of health behavior
实施蚁群优化算法来开发健康行为决定因素的短尺度
  • 批准号:
    431064501
  • 财政年份:
    2020
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Research Grants
High-Performance Optimization Algorithm based on Machine Learning and Search
基于机器学习和搜索的高性能优化算法
  • 批准号:
    20H04251
  • 财政年份:
    2020
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Nonlinear non-convex optimization algorithm design for robust transceiver optimization in multi-user multi-antenna cloud radio access networks
用于多用户多天线云无线接入网络中鲁棒收发器优化的非线性非凸优化算法设计
  • 批准号:
    517334-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Postdoctoral Fellowships
Online system optimization algorithm development for building energy management
建筑能源管理在线系统优化算法开发
  • 批准号:
    538475-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Engage Plus Grants Program
Development of optimization algorithm for agrivoltaics system and cropping type
农业光伏系统和种植类型优化算法的开发
  • 批准号:
    19K06338
  • 财政年份:
    2019
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Advanced cooling system optimization algorithm development for building energy management
用于建筑能源管理的先进冷却系统优化算法开发
  • 批准号:
    530280-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Engage Grants Program
Stochastic Fixed Point Optimization Algorithm and Its Application to Ensemble Learning
随机不动点优化算法及其在集成学习中的应用
  • 批准号:
    18K11184
  • 财政年份:
    2018
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了